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Abstract

This paper conducts a theoretical and empirical investigation of the risks of globally

diversi�ed portfolios of stocks and bonds and of optimal intertemporal global portfo-

lio choice for long horizon investors in the presence of permanent cash �ow shocks

and transitory discount rate shocks to asset values. We show that an upward shift in

cross-country one-period return correlations resulting from correlated cash �ow shocks

increases the risk of global portfolios and reduces investors' willingness to hold risky

assets at all horizons. However, a similar upward shift in cross-country one-period re-

turn correlations resulting from correlated discount rate shocks has a much more muted

e�ect on long-run portfolio risk and on the willingness to long horizon investors to hold

risky assets. Correlated cash �ow shocks imply that markets tend to move together at

all horizons, thus reducing the scope for global diversi�cation for all investors regardless

of their investment horizon. By contrast, correlated discount rate shocks imply that

markets tend to move together only transitorily and long-horizon investors can still

bene�t from global portfolios to diversify long-term cash �ow risk. We document a

secular increase in the cross-country correlations of stock and government bond returns

since the late 1990ís. We show that for global equities this increase has been driven pri-

marily by increased cross-country correlations of discount rate shocks, or global capital

markets integration, while for bonds it has been driven by both global capital markets

integration and increased cross-country correlations of in�ation shocks that determine

the real cash �ows of nominal government bonds. Therefore, despite the signi�cant

increase in the short-run correlation of global equity markets, the bene�ts from global

equity portfolio diversi�cation have not declined nearly as much for long-horizon in-

vestors as they have for short-horizon investors. By contrast, increased correlation of

in�ation across markets implies that the bene�ts of global bond portfolio diversi�cation

have declined for long-only bond investors at all horizons. However, it also means that

the scope for hedging liabilities using global bonds has increased, bene�ting investors

with long-dated liabilities. Finally, we show that the well documented negative stock-

bond correlation in the U.S. since the late 1990's is a global phenomenon, suggesting

that the bene�ts of stock-bond diversi�cation have increased in all developed markets.

JEL classi�cation: G12.
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1 Introduction

The principle of portfolio diversi�cation states that investors can signi�cantly reduce their
exposure to uncompensated risk by holding a well diversi�ed portfolio of asset classes and
securities (Markowitz, 1952). The enormous growth of assets under management in invest-
ment vehicles that emphasize portfolio diversi�cation and index investing is arguably a direct
result of the widespread adoption of this insight from academic Finance in investment prac-
tice (Sunderam et al. 2015, Viceira and Ciechanover 2016). However, although investors
appear to have embraced the principle of diversi�cation for their portfolios of domestic eq-
uities and bonds, they still seem reluctant to hold globally diversi�ed portfolios despite the
broad availability of inexpensive investment vehicles to invest globally and the well docu-
mented historical bene�ts of international portfolio diversi�cation at short horizons (French
and Poterba 1991, Philips, 2014, Bekaert et al., 2016).2

This paper conducts a theoretical and empirical investigation of the bene�ts of global
portfolio diversi�cation for long horizon investors. We argue that long-horizon considera-
tions make the case for holding globally diversi�ed portfolios even stronger in the sense that
increases in short-run cross-country return correlations that imply a reduction of the bene�ts
of global diversi�cation for short horizon investors do not necessarily imply such a reduction
for long horizon investors. Long-horizon investors can still bene�t from diversifying their
portfolios across equity and bond markets even when short-horizon investors see those ben-
e�ts diminished.

The optimality of holding globally diversi�ed portfolios has been examined under the
assumption that investment opportunities are constant (Grubel 1968, Solnik 1974, French
and Poterba 1991, De Santis and Gerard 1997). Under this assumption, investment horizon
is irrelevant for portfolio decisions and, aside from investors risk tolerance, the main determi-
nant for portfolio choice is the volatility, correlation, and expected return structure of asset
returns (Samuelson 1968, Merton 1969). In such environment, an increase in cross-country
return correlations, all else equal, reduces the bene�ts of international portfolio diversi�ca-
tion for all long-only investors regardless of their investment horizon and risk tolerance.

Building on this logic, the traditional empirical argument for holding globally diver-

2The "home bias" in investors portfolios was �rst documented by French and Poterba (1991), who argued
that it was hard to justify in light of the volatility and cross-country correlation of returns in global equity
markets, plausible expected return assumptions, and the transaction costs of investing abroad. Vanguard
(2014) reports that while U.S. equities accounted for 51% of global equity markets capitalization on December
31, 2013, U.S. mutual investors held, on average, only 27% of their total equity allocation in non-U.S. equity
funds. Typical portfolio advice and actual portfolio construction by investment professionals also appear
to be biased towards domestic assets. For exampe, in the same report, Vanguard suggests "a reasonable
starting allocation to non-U.S. stocks of 20%, within an upper limit based on global market capitalization."
Life-cycle funds, which have become the default allocation in de�ned-contribution pension plans, exhibit a
domestic bias built into their equity and bond allocations. Bekaert et al. (2016) examine the international
equity allocations of 3.8 million individuals over the period 2005-2011, and �nd that younger cohorts tend
to be more internationally diversi�ed than older cohorts, and that all cohorts seem to have increased their
exposure to global stocks over time.
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si�ed equity portfolios has relied primarily on the fact that global stocks has historically
exhibited low enough cross-country return correlations that investors would need to have
implausibly large return expectations on their own domestic markets relative to other mar-
kets to justify holding a domestically biased portfolio (French and Poterba 1991). Campbell,
Serfaty-de-Medeiros, and Viceira (2010) document that historically currency-hedged long-
term government bond returns exhibit cross-country correlations even lower than those of
equities, suggesting that the case for holding globally diversi�ed bond portfolios is also strong.

However, in recent decades as the cross-country correlations of global markets have ex-
perienced a signi�cant increase (Quinn and Voth, 2008, Asness, Israelov, and Liew, 2011),
suggesting a diminution of the bene�ts of global portfolio diversi�cation. Figure 1 illus-
trates this empirical phenomenon. It plots the average 3-year moving correlation of monthly
currency-hedged equity and bond returns across seven major markets (Australia, Canada,
France, Germany, Japan, United Kingdom, and the United States) that make up most of
global market capitalization for the 1986-2013 period. Figure 1 shows a secular increase in
the cross-country correlations of stock and bond returns, likely driven by the phenomena of
globalization of trade and capital �ows.3 The �gure also shows that the global �nancial crisis
of late 2008 and early 2009 also led to a further temporary signi�cant increase in correlations.

Complementing Figure 1, Figure 2 plots the average 3-year moving stock-bond correla-
tion both within countries and across countries. This �gure shows a strong decline in the
stock-bond correlation over the same period, including a reversal of its sign from positive
to negative since the turn of the century. Figure 2 shows that this phenomenon, which has
been well documented for the U.S. and the U.K., extends to a wide cross-section of developed
economies (Campbell, Shiller, and Viceira 2009, Campbell, Sunderam, and Viceira, 2007). It
suggests that, as the bene�ts of international portfolio diversi�cation within stock and bond
portfolios appear to have declined over time, the bene�ts of diversi�cation across stocks and
equities appear to have increased.

The traditional argument for global portfolio diversi�cation assumes that discount rates
are constant and that all variation in asset values and returns is driven by news about cash
�ows. However, research in Finance in recent decades has documented ample empirical evi-
dence of predictable transitory variation in discount rates, both real interest rates and asset
returns at the asset class level and at the individual security level (Campbell 1991, Cochrane,
2008 and 2011, Vuolteeenaho 2002). This evidence implies that realized asset returns and
asset valuation vary over time as the result of both shocks to cash �ows, which empirically
appear to be permanent, and shocks to discount rates, which appear to be transitory (Camp-
bell and Shiller, 1988, Campbell 1991, Campbell and Vuolteenaho 2004). Time variation in
discount rates also implies a wedge between the optimal portfolios of long horizon investors
and those of short horizon investors (see Campbell and Viceira 2002 for a textbook treat-

3Interestingly Figure 2, which plots the average 3-year moving stock-bond correlation both within coun-
tries and across countries, shows a strong decline in the stock-bond correlation from positive to negative.
This suggests that, as the bene�ts of international portfolio diversi�cation within stock and bond portfolios
appear to have declined over time, the bene�ts of diversi�cation between stocks and equities appear to have
increased.
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ment).

In light of this evidence and its implications for optimal portfolio choice, we revisit the
case for global portfolio diversi�cation in an environment with transitory variation in dis-
count rates and permanent cash �ow shocks and transitory discount rate shocks to asset
valuations. In such environment, both types of shocks can drive the correlation of returns
across assets or markets. We show that an increase in cross-country return correlations
like the one documented in Figure 1 does not necessarily imply a decline of the bene�ts
of global portfolio diversi�cation for long-horizon investors all else equal. Whether such
increase reduces the bene�ts of global portfolio diversi�cation for long-horizon investors de-
pends crucially on what type of cross-country news correlation drives it.

If it is driven by an increase in the cross-country correlations of cash �ow news, the
bene�ts of portfolio diversi�cation decline for all investors regardless of their horizon. Intu-
itively, such an increase implies that permanent cash �ow shocks to market valuations tend
to happen simultaneously, thus reducing the scope for global diversi�cation for all investors
regardless of their investment horizon. If it is driven by an increase in the cross-country
correlations of discount rate news, the bene�ts of portfolio diversi�cation for all investors
decline unambiguously for short horizon investors, but not for long horizon investors. In-
tuitively, such an increase implies that transitory discount rate shocks to valuations tend
to happen simultaneously, driving up short-run cross-country correlations but not long-run
correlations, which are driven by permanent cash �ow shocks. Therefore, the scope for global
diversi�cation for long-term investors is not diminished.

To illustrate this result, we build a stylized symmetrical model of global capital markets
and show that an upward shift in the cross-country correlations of cash �ow news increases
portfolio risk equally at all horizons, while an upward shift in the cross-country correlations
of discount rate news increases portfolio risk relatively less or not at all at long horizons.
We also examine in the context of this stylized model of identical markets calibrated to U.S
stock returns the impact of increases in the cross-country correlation of news on optimal
portfolio choice at long and short horizons, assuming investors maximize expected power
utility of wealth at a �nite horizon (Jurek and Viceira, 2011). We consider increases in the
cross-country correlations of both cash �ow news and discount rate news that result in an
identical increase in the cross-country correlation of one-period returns. We show that an
increase in cash �ow news cross-country correlations leads to a reduction in the optimal eq-
uity holdings which is much larger at long-horizons that at short horizons. By contrast, an
increase in discount rate news cross-country correlations leads to a much smaller reduction in
optimal equity holdings at all horizons. Therefore, our results imply that similar increases in
short-run cross-country return correlations have a much larger impact on optimal portfolios
at long horizons when they are driven by increased correlation of cash �ow news.

We explore the implications of these insights for global diversi�cation in stocks and bonds.
We start our empirical analysis by estimating the sources of cross-country return correlations
in equity and sovereign bond markets in the 1986-2013 period for a cross section of seven
developed economies representing most of global market capitalization. We also estimate
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the changes in these correlations between the �rst and the second half of the sample. We
do not account in our analysis for the estimation uncertainty associated with our estimates
of predictable variation in discount rates and the subsequent decomposition of realized re-
turns into their news components, although we use simultaneously the whole cross-section
of countries in our estimation.4

Our news estimates are based on the the return decomposition and news estimation
framework of Campbell (1991). Following Ammer and Mei (1996), we interpret an increase
in the cross-country correlations of discount rate news as an indicator of increased �nancial
integration of markets, and an increase in the cross-country correlations of cash �ow news
as an indicator of increased real integration for stocks. For bonds, an increase in the cross-
country correlations of cash �ow news re�ects an increase in the cross-country correlation of
in�ation news. This follows directly from the fact that the bonds we use in our analysis are
nominal bonds, so their real cash �ows vary inversely with in�ation.

We document an economically and statistically signi�cant increase in the average cross-
country correlation of discount rate news in the 2000-2013 period relative to the 1986-1999
period for both stocks and bonds, and a signi�cant increase in the average cross-country
correlation of cash �ow news (i.e., in�ation news) for bonds. Our estimates suggest that the
degree of real and �nancial integration of global stock and bond markets has increased in the
most recent period, with capital market integration being the main driver of the increased
co-movement of global equity and bond markets. Arguably the freedom of capital to �ow
across borders has drastically reduced capital market segmentation: Today the marginal in-
vestor in most developed markets is more likely to be a global investor, and investor sentiment
and risk aversion in developed markets tend to move together more strongly than in the past.

Our results about increased real and �nancial global market integration are robust to
alternative measures of market integration. In particular, we expand the R²-based measure
of market integration of Pukthuanthong and Roll (2009) to accommodate the cash �ow and
discount rate decomposition of realized returns. We also �nd strong evidence of increased
real and �nancial market integration in the second subperiod, especially �nancial market
integration, under this alternative measure.

Next we explore the implications of our empirical �ndings for global portfolio diversi-
�cation in two di�erent but related ways. First, following the methodology in Campbell
and Viceira (2005), we compute the risk of global portfolios of stocks and bonds across in-
vestment horizons and across subsamples. For equities, we �nd that the long-run risk of
internationally diversi�ed stock portfolios has in fact declined in the late period relative to
the early period, despite the signi�cant increase in short-run cross-country return correlations
in the late subperiod. We show that this decline in long-run portfolio equity risk is the result
of both a cross-country covariance (or correlation) e�ect and a within-country variance e�ect.

4There is disagreement in the literature about how precisely one can estimate time variation in expected
returns: See Campbell and Yogo (2006), Campbell and Thompson (2008), Goyal and Welch (2008), and
Pastor and Stambaugh (2009 and 2012).
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The cross-country correlation e�ect is that capital market integration, i.e., increased
cross-country correlations of discount rate news, is the main driver of the increase in short-
run cross-country return covariances in the late period. As our model shows, this e�ect
increases short-run cross-country return covariances but not their long-run counterparts.
The within-country variance e�ect is increased within-country stock return predictability
over this period, which results in a decline of long-run within-country return variances.

By contrast, our estimates indicate that the risk of global bond portfolios has shifted
upwards in the second subperiod across all horizons, consistent with our prior �nding that,
for bonds, the cross-country correlations of both discount rate news and cash �ow news have
increased in the second subperiod. This implies that the bene�ts of global diversi�cation
in bonds have declined for long-only investors in the most recent period, regardless of their
investment horizon. Interestingly, it also implies that global bond portfolio diversi�cation is
bene�cial to investors with long-term liabilities such as pension funds. Such investors can use
global bonds to hedge their local pension liabilities. These bene�ts can be especially large to
investors whose liabilities are large relative to the size of their domestic bond markets and
are exposed to adverse price pressure when they try to hedge their liabilities in their local
markets (Greenwood and Vayanos 2008, Hamilton and Wu 2012).

Second, we compute optimal intertemporal global equity portfolio allocations and ex-
pected utility implied by our estimates across periods under di�erent assumptions about
investor preferences. We consider an investor with power utility de�ned over terminal wealth
at a �nite horizon as in Jurek and Viceira (2011) and another with Epstein-Zin utility over
instantaneous consumption and an in�nite horizon as in Campbell and Viceira (1999) and
Campbell, Chan, and Viceira (2003). Our �ndings suggest that the increase in the cross-
country correlations of stock returns has not led to reduction in the bene�ts of global equity
portfolio diversi�cation at long horizons in the most recent period, even after we control for
the increase in within-country stock return predictability. Because this increase results from
correlated discount rate news, long-horizon investors still �nd that holding global equity
portfolios helps diversify cash �ow risk.

The paper is organized as follows. Section 2 introduces the basic asset return decompo-
sition into cash �ow news and discount rate news. Section 3 explores long-run portfolio risk
and optimal intertemporal global portfolio diversi�cation in a stylized symmetrical model
of global markets. This section provides insights into the di�erential e�ects of each type of
returns news on long-run global portfolio risk and portfolio choice. Section 4 conducts an
empirical analysis of the changes in cross-country stock and bond return correlations over
time and the sources of these changes. Section 5 explores the implications of those changes
for the risk of globally diversi�ed portfolios of stocks and bonds across investment horizons,
and for optimal intertemporal portfolio choice. Finally, Section 6 concludes.
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2 Asset Return Decomposition

The starting point of our analysis is the log-linear approximation to present value relations
of Campbell and Shiller (1988) and the return decomposition of Campbell (1991). A log-
linearization of the return on an asset around the unconditional mean of its dividend-price
ratio�where dividend is a proxy for cash �ow�implies

rt+1 ≈ k + ρpt+1 + (1− ρ) dt+1 − pt, (1)

and

pt − dt =
k

1− ρ
+ Et+1

∞∑
j=0

ρj [∆dt+1+j − rt+1+j] , (2)

where rt denotes the natural log of the gross total return on the asset, pt the log of its
price Pt, and ∆dt+1 the change in the log dividend (or cash �ow). The constants ρ and
k are log-linearization parameters, with ρ ≡ 1/

(
1 + exp

(
d− p

))
and k ≡ − log(ρ) − (1 −

ρ) log(1/ρ− 1), where d− p denotes the unconditional mean of the log dividend-price ratio.
This log-linear approximation rules out bubbles by imposing limj→∞ ρ

jpt+j = 0.

Substitution of (2) into (1) gives the following decomposition of realized returns (Camp-
bell 1991):

rt+1 − Et [rt+1] = (Et+1 − Et)
∞∑
j=0

ρji∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+1+j. (3)

Equation (3) shows that the unexpected log return on an asset re�ects changes in either its
expected future cash �ows or in its expected future returns (or discount rates). Following
standard terminology in this literature, we will refer to the former as cash �ow shocks or
cash �ow news, and to the latter as discount rate shocks or discount rate news, and write
more succinctly

rt+1 − Et [rt+1] ≡ NCF,t+1 −NDR,t+1. (4)

We can further decompose NDR,t+1 into news about excess log returns�or risk premia�,
and news about the return on the reference asset used to compute excess returns:

NDR,t+1 = NRR,t+1 +NRP,t+1, (5)

with

NRR,s,t+1 ≡ (Et+1 − Et)

[
∞∑
j=1

ρjrNf,t+1+j

]
,

NRP,s,t+1 ≡ (Et+1 − Et)

[
∞∑
j=1

ρjxrt+1+j

]
,

8



where xrt+1+j = rt+1+j + rNt+1+j and r
N
t+1+j is the log return on the benchmark asset.

In our empirical analysis we use cash (i.e., a short-term nominal bond like a T-bill in
the US) as the reference asset, and measure both excess log returns and the return on the
short-term bond in real terms. That is rNf,t+1 = yN1,t − πt+1, where y

N
1,t denotes the yield on

a one-period nominal bond at t, which is also its nominal return at t + 1, and πt+1 denotes
log in�ation.

The preceding expressions assume the asset is a perpetual claim on cash �ows, such as
equities or a consol bond. In our empirical analysis we also consider nominal bonds, whose
cash �ows (i.e., coupons) are �xed in nominal terms�and thus in real terms they vary
inversely with the price level�and have a �xed maturity. The Appendix shows that for a
$1-coupon nominal bond with maturity n,

rn,t+1 − Et [rn,t+1] = NCF,n,t+1 −NRR,n,t+1 −NRP,n,t+1, (6)

with

NCF,n,t+1 = −NINFL,n,t+1 ≡− (Et+1 − Et)

[
n−1∑
j=1

ρjbπt+1+j

]
,

NRR,n,t+1 ≡ (Et+1 − Et)

[
n−1∑
j=1

ρjbr
N
f,t+1+j

]
,

NRP,n,t+1 ≡ (Et+1 − Et)

[
n−1∑
j=1

ρjbxrn−j,t+1+j

]
,

and ρb = 1/ (1 + exp (−p̄n)).

The news components de�ned above are not directly observable, but we can infer them
from a return generating model. We follow Campbell (1991) and assume that the asset
return generating process follows a �rst-order vector autoregressive (VAR) model:

z̃t+1 = a + Az̃t + ut+1, (7)

where z̃t+1 is a state vector whose �rst elements are the excess log returns on the assets under
consideration, and the rest are state variables that predict excess returns and variables that
capture the dynamics of in�ation and the short-term interest rate. The vector of innovations
ut+1 is uncorrelated over time with conditional variance-covariance matrix Vt [ut+1].

The assumption of a �rst order for the VAR is not constraining because higher order
vector autoregressions can be written as a VAR(1) through a straightforward change in the
state vector. The return decomposition is sensitive to the particular speci�cation of the
components of the state vector (Chen and Zhao 2009). We specify our state vector to in-
clude variables for which there is wide consensus that capture time variation in risk premia,
in�ation, and real interest rates.
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Given a speci�cation for z̃t+1, it is straightforward to derive the components of the return
decomposition as a function of the vector ut+1 of innovations to z̃t+1 and the parameters of
the VAR(1). We perform this derivation in both Section 3 and Section 4.

3 Long-Run Portfolio Risk and Optimal Global Portfolio

Diversi�cation in a Symmetrical Model of Asset Re-

turns

The return decomposition (4) implies that asset values and returns move over time in re-
sponse to either changes in expected future cash �ows or changes in discount rates. Therefore
if asset returns are conditionally cross-sectionally correlated, it must be because either their
cash �ows or their discount rates, or both, are conditionally cross-sectionally correlated. This
section shows that each type of correlation has a di�erent impact on portfolio risk, portfolio
choice, and the bene�ts of portfolio diversi�cation at investment horizons beyond one period.

3.1 Model

To help �x ideas we consider a symmetrical model of investment opportunities, with N mar-
kets or assets (to which we will refer also as �countries�) with identical return generating
processes. This stylized model is particularly helpful because it allows to cleanly disentangle
the e�ects of di�erent types of cross-country news correlations on portfolio risk and portfolio
choice at long horizons.

The dynamics of excess returns on each market i is given by the following single state
variable VAR(1) model:

ri,t+1 = µ1 + βsi,t + ui,t+1 (8)

si,t+1 = µ2 + φsi,t + usi,t+1, (9)

where ri,t+1 denotes the log return on country i, and si,t+1 denotes the state variable driving
the time variation in the conditional expected return on country i, given by Et[ri,t+1] =
µ1 + βsi,t. Without loss of generality we normalize β > 0. The parameters µ1, µ2, β, and φ
are identical across countries, with |φ| < 1 to preserve stationarity.

The within-country conditional variance-covariance matrix of the shocks to the VAR is
also identical across countries and constant over time:

Vt [ui,t+1] =

[
σwcuu σwcus
σwcus σwcss

]
. (10)

where ui,t+1 = (ui,t+1, usi,t+1)
′ and the superscript wc denotes within-country quantities.

Finally, the conditional cross-country covariance matrix of VAR shocks between any pair
of countries is also identical across country pairs and constant over time:

Ct [ui,t+1,uj,t+1] =

[
σxcuu σxcus
σxcus σxcss

]
(11)
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for all i and j. The superscript xc denotes cross-country quantities.

This stylized model of country returns de�ned by equations (8)-(11) implies that coun-
tries are identical and symmetrical with respect to the structure of their return dynamics
and the cross-country correlation structure of returns and state variables. Of course the
realized paths of returns and the state variable in each country will vary across countries.
For example, in this model the expected excess return on country i is given by µ1 + βsi,t,
whose realizations depend on the realizations of the country-speci�c state variable si,t.

A straightforward application of the return decomposition (4) to the VAR(1) model (8)-
(11) shows that the shocks to the model (8)-(9) are related to structural cash �ow and
discount rate shocks as follows:

NDR,i,t+1 = λusi,t+1, (12)

NCF,i,t+1 = ui,t+1 + λusi,t+1, (13)

with

λ =
ρβ

1− ρφ
.

(See Appendix.)

Therefore discount rate news are proportional to shocks to the state variable driving ex-
pected returns, with a proportionality constant λ which is increasing in the persistence (φ) of
the state variable or expected returns, the loading of expected returns on the state variable
(β), and the log-linearization parameter ρ. Note that when expected returns are constant,
i.e., when β = 0, the constant λ is zero and all variation in returns is driven exclusively by
cash �ow news: ui,t+1 = NCF,i,t+1.

Our assumptions about the conditional covariance structure of the innovations to the VAR
(10)-(11), together with equations (12) and (13), imply that both within-country and cross-
country conditional variances and covariances of news are constant over time and identical
across countries. To �x notation, we write

Ct[NCF,i,t+l, NCF,j,t+l] ≡ σmCF,CF , (14)

Ct[NCF,i,t+l, NDR,j,t+l] ≡ σmCF,DR, (15)

Ct[NDR,i,t+l, NDR,j,t+l] ≡ σmDR,DR, (16)

where m ≡ wc when i = j, and m ≡ xc when i 6= j. For example, σxcCF,CF denotes both the
conditional cross-country covariance of cash �ows news.

3.2 Correlated Return News and the Portfolio Risk Across Invest-
ment Horizons

The symmetrical model of Section 3.1 provides a convenient framework to explore the impact
of each type of return news on portfolio risk and portfolio choice across investment horizons.
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Consider an equally-weighted portfolio of the N identical and symmetrical markets. This
portfolio is optimal for a mean-variance investor who can invest only in these N risky markets.
The risk of this portfolio at horizon k, de�ned as the conditional variance of the k-horizon
log portfolio return normalized by the investment horizon, is a weighted average of the
within-country conditional variance of k-horizon returns and the cross-country covariance of
k-horizon returns:

1

k
Vt[r

(k)
p,t+k] =

1

N

1

k
Vt[r

(k)
i,t+k] + (1− 1

N
)
1

k
Ct[r

(k)
i,t+k, r

(k)
j,t+k]. (17)

where r
(k)
i,t+k =

∑k
l=1 ri,t+l is the log return at horizon k and

Ct[r
(k)
i,t+k, r

(k)
j,t+k] =

k∑
l=1

Ct[ri,t+l, rj,t+l] + 2
k−1∑
l=1

k−l∑
m=1

Ct[ri,t+l, rj,t+l+m]. (18)

A similar expression obtains immediately for Vt[r
(k)
i,t+k] by noting that Vt[r

(k)
i,t+k] = Ct[r

(k)
i,t+k, r

(k)
i,t+k].

(Please refer to the Appendix for derivations of all expressions in this section.)5

We are interested in expressing the conditional within-country and cross-country mo-
ments of k-period returns as a function of the conditional moments of return news. A
forward recursion of the dynamic equations of the VAR(1) model (8)-(9) shows that future
one-period realized returns are given by

ri,t+l − Et[ri,t+l] = NCF,i,t+l −NDR,i,t+l +
β

λ

l−1∑
m=1

φm−1NDR,i,t+l−m, (19)

where we have replaced the reduced-form shocks ui,t+l and usi,t+l with the structural shocks
NCF,i,t+l and NDR,i,t+l using (12) and (13). Note that βλ−1 = (1− ρφ)/ρ > 0.

Equation (19) shows that conditional on information at time t, the realized return on an
asset at time t+ l depends only on the contemporaneous cash �ow shock, but it depends on
the entire history of discount rate shocks between t and t+ l when expected returns are time
varying and persistent, i.e., when both β and φ are not zero. Moreover, the contemporaneous
discount rate shock impacts the return negatively, but the past history of discount rate news
impacts the return positively. That is, a positive discount rate shock has an immediate neg-
ative impact on realized returns, but its e�ect reverses over time. This re�ects the transitory
nature of discount rate news: A positive shock to discount rates depresses asset valuations
contemporaneously but, because it is a transitory shock, its impact eventually reverses back,
driving future prices and returns up. The autoregressive coe�cient φ determines the speed
of this reversion.

5We normalize by k because Vt[r
(k)
p,t+k]/k is a constant independent of investment horizon in the absence

of return predictability. To see note from the de�nition of k-horizon log return that the moments on the
right hand side of (17) are all proportional to k.
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Using expression (19) it is straightforward to write the conditional moments of one-period
returns in (18) as a function of the conditional moments of return news:

Ct[ri,t+l, rj,t+l] = [
β2

λ2
(1− (φ2)l−1)

1− φ2
+ 1]σxcDR,DR + σxcCF,CF − 2σxcCF,DR, (20)

and

Ct[ri,t+l, rj,t+l+m] =
βφm−1

λ
(σxcCF,DR − σxcDR,DR) +

β2φm

λ2
1− (φ2)l−1

1− φ2
σxcDR,DR, (21)

for l > 1 and m ≥ 1. Note that the moments of cash �ow news enter only the contempo-
raneous covariance of returns and do so with a coe�cient of one. The moments of discount
rate news enter both the contemporaneous and the lead-lag covariances of returns, with co-
e�cients that are a function of β and φ.

We can now compute the cross-country component of portfolio risk at horizon k in (17)
as a function of the moments of news components of returns. Direct substitution of (20) and
(21) into (18) gives:

1

k
Ct[r

(k)
i,t+k, r

(k)
j,t+k] = σxcCF,CF +

[
a(k)2 + b(k)

]
× σxcDR,DR − 2× a(k)× σxcCF,DR, (22)

for k > 1 and
Ct[ri,t+1, rj,t+1] = σxcDR,DR + σxcCF,CF − 2σxcCF,DR. (23)

for k = 1. The coe�cients a(k) ≡ a(k; β, φ, ρ) and b(k) ≡ b(k; β, φ, ρ) are given in the
Appendix.

Equations (22) and (23) allow us to understand the impact of correlated cash �ow news
and discount rate news on portfolio risk across investment horizons. At a one period horizon
(k = 1) we have that cross-country cash �ow news covariances and cross-country discount
rate news covariances have identical impact on the cross-country covariance of returns and
portfolio risk at a one-period horizon. At horizons k > 1, equation (22) shows that each
type of return news covariance has a di�erent e�ect on portfolio risk.

In particular, the cross-country covariance of cash �ow news σxcCF,CF has a coe�cient of
one at all horizons, implying that an increase in the cross-country covariance of cash �ow
news has identical impact on portfolio risk at all horizons. But the coe�cient on σxcDR,DR and
the coe�cient on σxcCF,DR are a function of investment horizon. The Appendix shows that
in the limit as investment horizon grows, the cross-country component of portfolio risk (22)
converges to

limk→+∞
1

k
Ct[r

(k)
i,t+k, r

(k)
j,t+k] = σxcCF,CF+

(
1− 1− ρφ

ρ− ρφ

)2

×σxcDR,DR−2×
(

1− 1− ρφ
ρ− ρφ

)2

×σxcCF,DR
(24)
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where the coe�cient on σxcDR,DR is positive, smaller than one whenever ρ > φ and it is su�-
ciently close to one, and zero when ρ = 1.6 These conditions hold in all the cases we consider
in our empirical analysis.

Equation (24) shows that, unless discount rates are extremely persistent, the impact of a
given increase in the cross-country covariance of discount rate news on portfolio risk at long
horizons is smaller than a similar increase in the covariance of cash �ow news. To see this,
Figure 3 plots the coe�cient on σxcDR,DR for values of β, φ, and ρ calibrated to U.S. data in
our sample. The �gure shows that, for this empirically relevant calibration, the coe�cient on
σxcDR,DR declines monotonically with investment horizon and rapidly approaches values well
under 0.3 at horizons of 10 years or more, consistent with the intuition that correlated dis-
count rate news matter less than correlated cash �ow news for portfolio risk at long horizons.

A similar logic applies to the variation of the within-country component of portfolio risk
across risk Vt[r

(k)
i,t+k]. From the symmetry of the model and Vt[r

(k)
i,t+k] = Ct[r

(k)
i,t+k, r

(k)
i,t+k], it

follows that:

1

k
Vt[r

(k)
i,t+k] = σwcCF,CF +

[
a(k)2 + b(k)

]
× σwcDR,DR − 2× a(k)× σwcCF,DR. (25)

Of course, the within-country k-return portfolio variance (25) is also the k-horizon risk
of a single-country portfolio. Campbell and Viceira (2005), Pastor and Stambaugh (2012),
and others have studied the properties of this variance as a function of the moments of the
VAR(1) shocks. Equation (25) writes it as a function of the moments of cash �ow news and
discount rate news. This derivation helps us gain intuition into why long-horizon portfolio
risk per unit of time is declining in investment horizon when asset returns are predictable in
empirical calibrations: Discount rate shocks are transitory shocks whose impact on long-run
portfolio return variability is smaller than the impact of permanent cash �ow shocks.

When returns are not predictable (i.e., β = 0), discount rate news are zero, and all
return variation comes from cash �ow news. In such case, (22) and (25) reduce to σxcCF,CF
and σwcCF,CF respectively, which implies

1

k
Vt[r

(k)
p,t+k] =

1

N
σwcCF,CF + (1− 1

N
)σxcCF,CF .

That is, per-period portfolio risk is constant across investment horizons.

3.3 Illustrative Example

To illustrate the impact of each news component of unexpected returns on portfolio risk
at di�erent investment horizons, we have calibrated the VAR(1) model (8)-(9) to US ex-
cess stock returns, with the log dividend-price ratio as the state variable. We use these

6Note from that ρmeasures the importance of cash �ow news and discount rate news far in the future for
valuations and returns (see equation [3]), while φ determines the persistence of discount rate news. Therefore,
the conditions ρ > φ and ρ→ 1 essentially say that correlated discount rate news do not matter for long-run
portfolio risk when distant cash �ows matter for valuation.
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estimates to compute the volatility per period
√
Vt[r

(k)
p,t+k]/k given in equation (17) of an

equally-weighted portfolio of U.S. stock market clones under three di�erent scenarios for the
cross-country correlations of return news.

The �rst scenario, or baseline case, sets cross-country news correlations to zero so all
markets are uncorrelated. The second scenario and the third scenario vary the cross-country
correlation of cash �ow news and discount rate news respectively while holding the cross-
country correlation of one-period returns at the same value. The second scenario sets the
cross-country correlation of cash �ow news to its maximum admissible value and the cross-
country correlation of discount rates to zero.7 The third scenario sets the cross-country
correlation of cash-�ow news to zero, and the cross-country correlations of discount rate
news to the value that implies the same one-period cross-country return correlation as in
the second scenario.8 All scenarios assume that discount rate news and cash �ow news are
uncorrelated, both within countries and across countries..9

Figure 4 plots annualized portfolio risk
√
Vt[r

(k)
p,t+k]/k as a function of investment horizon

for each of the three scenarios. Panel A plots portfolio risk for a portfolio of two countries,
and Panel B for a portfolio of seven countries�the number of countries we consider in our
empirical analysis. The �gure shows that portfolio risk per unit of time declines as the in-
vestment horizon increases in each of the scenarios. This results from return predictability
(Campbell and Viceira, 2005). In the absence of return predictability, the lines in each plot
would be horizontal.

The �gure shows that portfolio risk increases at all horizons when country returns be-
come correlated as a result of correlated cash �ow news. Moreover, the increase in portfolio
risk is proportionally larger at long horizons or, equivalently, portfolio risk declines more
slowly as investment horizon increases when cash �ow news are correlated across markets.
By contrast, portfolio risk increases proportionally less at long horizons when country re-
turns become correlated as a result of correlated discount rate news. In fact, portfolio risk
under correlated discount rate news converges rapidly to the risk under zero cross-country
news correlations as the investment horizon increases.

Comparing across panels, Figure 4 shows that overall portfolio risk declines as the num-
ber of countries increases for all horizons. But the �gure also shows that the di�erential

7In U.S. data, σwc
DR,DR/σ

wc
CF,CF = 2.6, that is, discount rate news are an order of magnitude more volatile

than discount rate news. Holding this ratio to 2.6 for all countries and setting all cother cross-country
correlations to zero, the maximum admissible value of the cross-country correlation of cash �ow news that
ensures that the overally variance-covariance matrix of shocks across all markets is positive semide�nite is
0.72. This in turn implies a cross-country correlation of returns of 0.09.

8This value is 0.11. It is much smaller because of the much larger volatiliy of discount rate news relative
to cash �ows news.

9In terms of the correlation structure to the innovations to the VAR, the �rst scenario implies zero
cross-country correlations of unexpected returns and shocks to the state variables (see equations 12 and 13).
The second scenario implies a positive cross-country correlation of unexpected stock returns and zero cross-
country correlations of dividend-price ratio shocks. The Appendix provides the values of the coe�cients.
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e�ect on long-run portfolio risk of correlated cash �ow news and correlated discount rate
news also changes with the number of countries. That is, the reduction in long-run portfo-
lio risk achieved by global portfolio diversi�cation is much larger when the driver of return
correlations is correlated discount rate news than when the driver is correlated cash �ow news.

This stylized symmetrical model illustrates the main point of our argument. For a given
increase in the short-run cross-country correlations of returns, the increase in overall port-
folio risk is signi�cantly smaller at long horizons when correlated discount rate news drives
the increase than when correlated cash �ow news drives it. Equivalently, the bene�ts of
international portfolio diversi�cation measured as a reduction on portfolio risk do not de-
cline as much for long-horizon investors as they do for short-horizon investors when capital
market integration (or correlated discount rates) is the source of increased cross-country re-
turn correlations. By contrast, the bene�ts of international portfolio diversi�cation decline
equally for all investors when real markets integration (or correlated cash �ows) is the source
of increased cross-country return correlations.

3.4 Optimal Global Portfolio Diversi�cation Across Investment hori-
zons

Our stylized symmetrical model is also helpful to understand the impact of �nancial and real
market integration on optimal international portfolio diversi�cation across investment hori-
zons. We illustrate these e�ects using the model of optimal intertemporal portfolio choice of
Jurek and Viceira (2011) in which an investor with power utility preferences over terminal
wealth at a �nite horizon faces a time-varying investment opportunity set described by a
VAR(1) model for returns and state variables.

Formally, an investor with investment horizon k chooses the sequence of portfolio weights{
ατt+k−τ

}τ=1

τ=k
between time t and (t+ k − 1) such that

{
ατt+k−τ

}τ=1

τ=k
= argmax Et

[
W 1−γ
t+k

1− γ

]
(26)

subject to the intertemporal budget constraint

Wt+1 = Wt (1 +Rp,t+1) , (27)

Rp,t+1 =
N∑
j=1

αi,t (Ri,t+1 −Rf,) +Rf,, (28)

where γ is the coe�cient of relative risk aversion, αt = (α1,t, . . . , αN,t)
′, Ri,t = exp {ri,t}− 1,

and Rf is the risk-free rate, which we assume is constant. The dynamics of excess log returns
in each market i follow the VAR(1) model (8)-(9), identical across markets.

This intertemporal portfolio optimization problem has an exact recursive solution up to a
log-linear approximation to the log return on wealth (27)-(28) (Jurek and Viceira, 2011). The
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recursive solution is an a�ne function of the vector of states variables with coe�cients that
vary with investment horizon that has two components. The �rst component is equal to the
optimal 1-period horizon allocation, which is the instantaneous mean-variance or �myopic�
optimal portfolio. The second component, which is horizon dependent, re�ects intertemporal
hedging motives in optimal portfolio choice that arise only when investment opportunities
are time varying. Therefore horizon e�ects enter portfolio choice exclusively through the
optimal desire of the investor to hedge changes in investment opportunities.

Figure 5 plots the mean optimal portfolio allocation to risky assets (??) as a function
of investment horizon for each of the scenarios we consider in Section 3.3. We add a risk
free asset (�cash�) to the menu of identical stock markets with returns calibrated to the U.S.
stock market, and set the investor's coe�cient of relative risk aversion to 5. Panel A presents
results for two countries, and Panel B for seven. Note that the optimal portfolio allocation to
risky assets is an equal weighted portfolio because all markets have identical return generat-
ing processes and cross-country correlations are identical for any pair of countries. Therefore
we need to report only one mean optimal portfolio allocation for each scenario.

The intercepts in the �gure re�ect the one-period or instantaneously mean-variance e�-
cient optimal allocation to risky assets. To facilitate interpretation, we set the unconditional
expected returns and the risk-free rate such that the mean optimal allocation to cash is zero
in the baseline scenario of zero cross-country return correlations. This implies a positive op-
timal allocation to cash, or equivalently a smaller optimal allocation to stocks, in the other
two scenarios where the cross-country correlation of one-period stock returns is positive.10

Figure 5 shows that total portfolio demand for stocks is increasing in investment horizon
in all three scenarios. This result is familiar from the literature that examines the optimal
allocation to stocks at long horizons. Intertemporal portfolio choice is entirely driven by
intertemporal hedging demand, which is positive in our calibration because shocks to the
state variable�or equivalently expected excess returns�are negatively correlated with real-
ized stock excess returns. That is, realized returns tend to be positive when expected excess
returns fall, implying that a long position in the risky asset helps hedge against a fall in
expected returns.

Figure 5 also shows that the intertemporal hedging demand for stocks is smaller in the
scenarios with correlated market returns than in the benchmark case with zero-correlation.
However, the extent to which this horizon e�ect is smaller depends crucially on the source
of the cross-correlation of returns. Intertemporal hedging demands are signi�cantly smaller
when the source of short-run cross-country correlations of stocks returns is correlated cash
�ow news than then the source is correlated discount rate news.

This result is consistent with our results for portfolio risk across investment horizons.
When discount rate news are correlated across markets but cash �ow news are not, the

10It is also the same in both scenarios because recall that we set the cross-correlations of cash �ow news
and discount rate news in each scenario such that they imply identical one-period return cross-correlations.
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scope for global diversi�cation declines at short horizons, but much less so at long horizons.
Long-horizon investors can still take advantage of a global portfolio to diversify cash �ow
risk, which is the most important risk at long horizons. At the same time, they can use
global stocks and not just their local market to hedge against adverse changes in expected
returns. By contrast, if cash �ow news become correlated across markets, the scope for
global diversi�cation declines for all investors regardless of their investment horizon.

Figure 5 is also helpful to understand optimal intertemporal portfolio demand as the
number of markets available for investing increases. The �gure shows that the total optimal
demand for stocks is independent of the number of markets available for investing at all
horizons in the baseline case of uncorrelated markets. To see this, note that total portfolio
demand obtains by multiplying by a factor of two the allocations in Panel A and by a fac-
tor of seven those in Panel B. As the number of markets increases, the investor distributes
the total portfolio demand for stocks across more markets but the total portfolio demand
for stocks, both myopic and hedging, remains unchanged. The scope for diversi�cation of
both discount rate risk and cash �ow risk increases in the number of uncorrelated markets
available for investing, as well as the ability to hedge adverse changes in expected returns.

Finally, Figure 5 shows that if returns are correlated across markets, the total optimal
portfolio demand for stocks is a decreasing function of the number of markets available
for investing at all horizons. The reduction in total portfolio demand is much larger when
the source of cross-country return correlations is correlated cash �ow news than when it is
correlated discount rate news. The di�erential e�ect of each type of news comes through the
intertemporal hedging demand, because the reduction in myopic demand is the same in both
scenarios. It is straightforward to see from Figure 5 that total intertemporal hedging demand
at the longest horizon in the plot declines from about 250% to about 220% in the correlated
discount rate news scenario as we go from two to seven markets, and from about 190% to 70%
in the correlated cash �ow news scenario. The investor still distributes the total portfolio
demand for stocks across more markets, but he does not see the increase in the number of
markets as an opportunity to take on more overall portfolio risk as he is just adding more
correlated�or less diversi�able�long run risk. But if the added risk is discount rate risk,
the long-horizon investor understands this correlated risk has only a transitory impact on
portfolio risk and he optimally reduces his overall risk exposure by much less than when the
added risk is cash �ow risk, which has a permanent impact on portfolio risk.

4 Sources of Return Correlation in Global Capital Mar-

kets

The stylized symmetrical model presented in Section 3 highlights the importance of un-
derstanding the sources of cross-country correlations of returns to evaluate the bene�ts of
international portfolio diversi�cation at long horizons. We now present an empirical analysis
of the return news decomposition presented in Section 2 for stocks and government bond
returns of seven major developed economies for the period January 1986 through Decem-
ber 2013. The countries included in our analysis are Australia, Canada, France, Germany,
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Japan, the U.K., and the U.S. These countries account for at least 80% of total global stock
market capitalization throughout our sample period.

4.1 VAR Speci�cation and Estimates

We estimate the VAR(1) model (7) for the seven countries using monthly data over the
entire sample period 1986.01-2013.12. Our speci�cation for the state vector for the VAR(1)
includes the the log return on equities and bonds in excess of the return on their domestic
T-bill,11 variables that are known to predict excess returns�dividend-price ratios and yield
spreads�, and variables that help capture the dynamics of real interest rates and in�a-
tion�nominal short-term interest rates and in�ation (Campbell, Chan, and Viceira, 2003,
Campbell and Viceira, 2005).

Speci�cally, we estimate a pooled VAR(1) model for the seven countries in our sample:

z̃i,t+1 = ai + Az̃i,t + ui,t+1, (29)

where

z̃i,t+1 =
[
xrs,i,t+1, xr10,i,t+1, di,t+1 − pi,t+1, πi,t+1, y

N
1,i,t+1, y

N
10,i,t+1 − yN1,i,t+1

]
, (30)

i denotes country, and ai is a 6× 1 vector of intercepts and A is a 6× 6 slope coe�cient ma-
trix which is identical for all countries. We estimate a pooled VAR(1) model in an attempt
to use as much cross-country information as possible to estimate the process for expected
returns, since our sample is relatively short in the time series dimension. In practice, this
procedure tempers the evidence of return predictability for those markets for which there is
more in-sample evidence of return predictability, like the U.K. and the U.S.

In (30), xrs,i,t+1 denotes the excess log return on equities in country i, xr10,i,t+1 the
excess log returns on the 10-maturity nominal government bond, di,t+1 − pi,t+1 the log of
the dividend-price ratio, πi,t+1 log in�ation, y

N
1,i,t+1 the short-term nominal log interest rate,

and yN10,i,t+1 the log yield on the 10-year nominal government bond. We measure excess log
returns in each country as

xri,t+1 = r$i,t+1 − yN1,i,t =
(
r$i,t+1 − πi,t+1

)
−
(
yN1,i,t − πi,t+1

)
≡ ri,t+1 − rNf,i,t+1.

Finally, ui,t+1 is an i.i.d. 6× 1 vector of shocks with within-country variance-covariance
matrix

∑wc
i and cross-country covariance matrix

∑xc
i,j, i, j = 1, ..., 7. We obtain monthly

data for the state variables in all seven countries from a variety of sources. The Appendix
provides a detailed description of the data and its sources.

4.2 Summary Statistics and VAR Estimates

Table 1, Table 2, and Table 3 present summary statistics for stock and bond returns over the
entire sample period and for two subperiods of equal length, 1986.01-1999.12 and 2000.01-
2013.12. This partition of the sample is motivated by our interest in exploring the sources

11This ensures that the return decomposition is currency independent (Campbell, Sefarty de Medeiros,
and Viceira, 2010).
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of the changes in cross-country stock and bond return correlations that have occurred dur-
ing our sample period, illustrated in Figure 1, and their impact on international portfolio
diversi�cation across investment horizons.

Table 1 shows that the Sharpe Ratio of bonds in every country is signi�cantly larger than
the Sharpe Ratio of equities, both in the whole sample and in each subperiod, with the sole
exception of the U.K. and the U.S. during the 1986-1999 period. The superior performance
of bonds re�ects a common long-term downward trend in nominal interest rates that has
pushed bond prices higher throughout the entire period in all countries; by contrast, equity
valuations have gone through periods of expansion and contraction, including the run-up in
valuations in the 1990's and the sharp drop in valuations during the �nancial crisis of 2008
and 2009.

Across subsamples, the cross-country average excess bond return remained stable at 3.1%
per annum, while the average excess stock return declined from 5.1% to 1.0% p.a. between
the �rst and the second half of the sample period. Return volatility in each market and in
each country has been fairly stable between subperiods�around 6% p.a. for bonds and 18%
p.a. for stocks.

Table 2 reports the cross-country correlation matrix of bond and stock excess returns
over the entire sample period and the two subperiods. Table 3 summarizes Table 2 and
reports within-country and cross-country average excess return correlations. These tables
complement Figure 1 and Figure 2. They show that cross-country return correlations have
increased signi�cantly from the early to the late subperiod for both stocks and bonds, and
that the stock-bond correlation has switched sign from positive to negative.

Appendix E reports the estimates of the pooled VAR(1) model as well as estimates for
each country. The top panel in each table reports coe�cient estimates with t-statistics in
parentheses and the R2 statistic for each equation in the model. The bottom panel reports
the correlation matrix of residuals, with the diagonal elements showing monthly standard
deviations multiplied by 100 and the o�-diagonal elements showing correlations.

We summarize here the estimation results. Our estimates reproduce the well-known
result that the dividend-price ratio forecasts stock excess returns positively and that the
short-term nominal rate forecasts stock excess returns negatively. Our estimates also repro-
duce the well-known result that yield spreads and short-term nominal interest rates have
predictive power for bond excess returns, with positive coe�cients. The equations for ex-
cess log returns exhibit the lowest R2, which demonstrates the di�culty of predicting returns.

The estimates for the equations corresponding to the log dividend-price ratio, log in�a-
tion, the nominal short-term interest rate, and the log yield spread show that each variable
is generally well-described by a univariate AR(1) process. The dividend-price ratio and the
nominal short rate follow persistent processes. The yield spread and in�ation follow less
persistent processes, with in�ation exhibiting the lowest persistence. As we will see, this has
important implications for the bene�ts of global diversi�cation of bond portfolios.
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The correlation matrix of residuals shows a large negative average correlation between
unexpected excess stock returns and shocks to the dividend-price ratio. We also estimate a
negative but smaller average correlation between unexpected excess bond returns and shocks
to the yield spread.12 Because the dividend-price ratio and the yield spread are the main
predictors of excess stock and bond returns, respectively, these negative correlations imply
that shocks to expected excess returns are negatively correlated with realized excess returns.
That is, stocks and bonds tend to do well when expected excess returns fall, thus providing
investors with a hedge against deterioration in investment opportunities.

4.3 Estimates of News Components of Stock and Bond Excess Re-
turns

We obtain estimates of the news components of stock and bond excess returns for each coun-
try implied by the estimates of the VAR(1) system (29)-(30).

Following standard practice in this literature, we have speci�ed the state vector (30) such
that we can explicitly identify unexpected stock excess returns and discount rate news�real
rate and stock excess returns�from equations in the VAR, and obtain cash �ow news obtain
as the sum of unexpected excess returns and discount rate news. Speci�cally, Appendix A
shows that the news components for stock returns given in (4)-(5) obtain from the VAR
system as follows:

xrs,t+1 − Et [xrs,t+1] =e1′ut+1,

NRP,s,t+1 =e1′

(
∞∑
j=1

ρjsA
j

)
ut+1,

NRR,s,t+1 =e5′

(
∞∑
j=1

ρjsA
j−1

)
ut+1 − e4′

(
∞∑
j=0

ρjsA
j

)
ut+1,

NCF,s,t+1 =xrs,t+1 − Et [xrs,t+1] +NRR,s,t+1 +NRP,s,t+1,

where we omit the country subscript i for simplicity, and where eL denotes a column vector
with a 1 in the L position and 0's in the rest.

We follow a di�erent identi�cation strategy for estimating the news components of bond
excess returns. We explicitly identify bond cash �ow news from the in�ation equation in
the VAR and obtain the risk premium or future expected excess returns component as the
residual. Appendix A shows that the news components for excess bond returns given in (6)
obtain from the VAR system as follows:

12Campbell, Chan, and Viceira (2003) and Campbell and Viceira (2005) report a positive estimate of this
correlation for the U.S. in the postwar period up to the early 2000's.
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xrn,t+1 − Et [xrn,t+1] =e2′ut+1,

NCF,n,t+1 =− e4′

(
n−1∑
j=1

ρjbA
j

)
ut+1,

NRR,n,t+1 =e5′

(
n−1∑
j=1

ρjbA
j−1

)
ut+1 − e4′

(
n−1∑
j=1

ρjbA
j

)
ut+1,

NRP,n,t+1 =NCF,n,t+1 −NRR,n,t+1 − (xrn,t+1 − Et [xrn,t+1]) .

We extract the news components of stock and bond excess returns for the entire sample
period as well as for the subperiods 1986-1999 and 2000-2013. To compute news components
for each subperiod, we use the full sample coe�cient estimates A and split the residuals ut+1

into two subsamples. That is, we assume that the dynamics of returns and the state variables
have been stable over the sample period. This assumption is motivated by the fact that the
the state variables that capture expected excess returns, in�ation, and the nominal short-
rate follow highly persistent processes that require long samples to be precisely estimated.
Additionally, we don't have strong priors about why the slopes of the VAR system might have
changed throughout our sample period, while we do have priors about why the correlation
structure of the shocks might have changed across subperiods. Accordingly, we use our entire
sample period to estimate the slope coe�cients.

4.4 News Decomposition of Cross-Country Correlations of Global
Stock and Bond Excess Returns

Following Ammer and Mei (1996), we use our estimates of the news components of returns
to explore the sources of the cross-country correlations of returns and their changes between
the 1986-1999 subperiod and the 2000-2013 subperiod. We adopt their terminology and refer
to cross-country cash �ow news correlations as a measure of real economic integration, and
to cross-country discount rate news�excess return news and real rate news�correlations as
a measure of �nancial integration.

To get intuition for these two types of integration, consider a world in which capital
markets are perfectly integrated, so there is a unique marginal investor pricing all assets.
Since discount rates are determined by investors, we would expect discount rates to move
synchronously in that world. Alternatively, we can also think of a world with integrated
capital markets as a world in which shocks to investor risk aversion or investor sentiment
propagate rapidly across markets. In either case, we expect discount rate news to be highly
correlated across markets. By contrast, cash �ows need not be perfectly correlated in such
world, just like we don't expect the cash �ows on two di�erent stocks in the same market to
be perfectly correlated, as they can be subject to idiosyncratic shocks in addition to aggre-
gate shocks.

Now consider a world with a high degree of economic integration. In that case we expect
aggregate shocks to a�ect all countries. To the extent that national stock markets are large
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enough to re�ect their national economies and allow for diversi�cation of company-speci�c id-
iosyncratic shocks, we expect country stock returns to re�ect global shocks and country-wide
shocks. Consequently, we expect a high degree of cross-country correlation of cash �ow news.

Finally, we also expect local in�ation to react in similar ways to global demand shocks in
a world with a high degree of real economic integration, particularly if central banks react
to those shocks in a similar manner. In that case we expect a high degree of cross-country
correlation of innovations in in�ation, i.e., in bond cash �ow news.

Table 4 reports the average cross-country correlations of the news components of ex-
cess stock returns for each subperiod (upper left panel), p-values of the di�erences based on
bootstrap and Fisher transformation methods (lower left panel), and the contribution of each
component to the average cross-correlation of unexpected excess stock returns (right panel).
Table 5 reports similar �gures for bond excess returns. (See Appendix G for a description
of the statistical tests and the calculation of the contribution of each component to total
correlation.)

Table 4 shows that the source of the large increase in correlations in global cross-country
correlations of stock excess returns from the early subperiod to the late subperiod has been
an increase in the cross-country correlations of discount rate news. The cross-country corre-
lations of both the real rate news component and the risk premium component of discount
rate news have experienced increases which are signi�cant both economically and statisti-
cally, from 0.33 to 0.59 and from 0.39 to 0.59, respectively. By contrast, the cross-country
correlations of cash �ow news have stayed fairly stable from one subperiod to another. The
upper right panel of Table 4 shows that the the risk-premium component of stock returns is
the main contributor to the total cross-country correlation of stock returns in both subperi-
ods, with a large increase of its relative importance in the second subperiod, from 35% to 68%.

The results in Table 4 suggest that �nancial integration has been the main driver of the
increase in cross-country correlations of stock returns since the turn of the century. These
results also highlight the importance of accounting for time variation in discount rates to
understand the second moments of returns. They also add to the evidence on time variation
in expected returns, since in a world with constant discount rates, cash �ow news is the only
source of cross-country return correlations and their change.

Table 5 shows that, in contrast to stocks, the cross-country correlation of cash �ow
news�i.e., the negative of in�ation news�has also been a signi�cant contributor to the
increase in cross-country bond return correlations from the early subperiod to the late sub-
period. The increase in cross-country in�ation news is signi�cant both economically and
statistically, from 0.29 to 0.50. Consistent with our �ndings for stock returns, the average
cross-country correlation of real rate news has also risen signi�cantly, from 0.30 to 0.57. The
cross-country correlation of risk premium news has also increased, although more modestly
from 0.21 to 0.37. This increase is nonetheless statistically signi�cant under the bootstrap
test and it is borderline signi�cant under the Fisher r-to-z method. The upper right panel
of the table shows that real rate news and risk premium news are the main contributors to
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the cross-country correlation of bonds returns in both subperiods, with a large increase in
the second subperiod.

Overall, Tables 4 and 5 present strong evidence that �nancial integration has been a
powerful driver of the increase in the cross-country correlation of stock and bond returns
between 1986-1999 and 2000-2013. In the case of bonds, increased cross-country correlations
of cash �ow (or in�ation) news has also been an important contributor to increased cross-
country return correlations.

Table 6 and Table 7 explore the sources of the stock-bond correlation within countries
(Table 6) and across countries (Table 7). Both tables show a switch from positive to negative
in the sign of the stock-bond cash �ow news correlation from the early period to the late
period. This is one of the main drivers of the switch in the sign of the stock-bond return
correlation shown in Figure 2 and Table 3. Since bond cash �ow news is the negative of
in�ation news, this switch in correlation implies that in�ation news has switched from be-
having countercyclically in the early period to behaving procyclically in the late subperiod
in our sample of countries.

The tables also show a signi�cant increase in the correlation of bond risk premium news
with stock cash �ow news in the most recent subperiod, which is the second main driver of
the switch in the sign of the stock-bond correlation. It suggests that investors demand lower
risk premia on bonds in recessions�when stock cash �ow news are negative�, consistent
with bonds being considered by investors as safe assets in the most recent period. Both sets
of results are consistent with the evidence shown in Viceira (2012) and Campbell, Sunderam
and Viceira (2013) for U.S. stocks and bonds, and the economic drivers of bond risk explored
in Campbell, P�ueger and Viceira (2015) for the U.S.

4.5 Robustness Check: Pukthuanthong and Roll (2009) Measure of
Market Integration

Thus far we have used only cross-country correlations of returns and their news components
as our metric for �nancial and real integration. Pukthuanthong and Roll (2009) argue that
small cross-country correlations do not necessarily imply a lack of integration. For example,
they argue that cross-country return correlations can be small even when countries are highly
integrated if returns are explained by a global multifactor model and each country return
loadings on these global factors di�er. They propose using an alternative metric of integra-
tion: the R2 from regressing returns on global factors estimated from a principal component
analysis. A larger R2 then corresponds to greater integration.

We apply the Pukthuanthong-Roll methodology to realized returns and the news com-
ponents of returns. For a given return or news series, we �nd the �rst three principal
components every year and the R2 from a simple least squares regression. This methodology
is particularly helpful to determine if the relatively low degree of cross-country correlations
of cash �ow news of stocks could be the result of a multifactor structure underlying these
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shocks instead of evidence of lack of integration in stock cash �ows. For all other news
components in stocks and bonds, the pair-wise correlations are already large in both subpe-
riods and have increased signi�cantly from the early to the late subperiod, suggesting that
pair-wise correlations help capture integration for these components.

Table 8 reports average R2 over the two subperiods for each series. Panel A corresponds
to stocks, and Panel B corresponds to bonds. When excess returns xrs,t+1 and xrn,t+1 are
the return series of interest, the R2 increases from 0.60 to 0.74 and 0.59 to 0.75, respectively.
This result suggests that the overall level of integration has risen between the two subperiods.
Not surprisingly, a similar result holds when conducting the analysis using innovations in
excess returns. The results for news terms lead to the same conclusions we have a achieved
from the cross-country correlation analysis: We �nd a substantial increase in R2 in each case
except for stocks cash �ow news, for which the increase in R2 is the smallest in magnitude.
This suggests a signi�cant increase in the level of �nancial integration in the stock market
and in the bond market from the early subperiod to the late subperiod.

5 The Impact of Real and Financial Integration on Port-

folio Risk and Optimal Global Portfolio Diversi�cation

at Long Horizons

Section 4 presents robust empirical evidence of an economically and statistically signi�cant
increase in the cross-country correlations of stock and bond excess returns between 1986-1999
and 2000-2013, driven primarily by an increase in the cross-country correlations of discount
rate news in both markets. It also documents a substantive increase in the cross-country
correlation of in�ation innovations that determine cash �ow news of nominal bonds.

We have shown in Section 3 that an increase in cross-country return correlations a�ects
portfolio risk and portfolio choice at long horizons di�erently depending on the source of such
increase�correlated cash �ow news or correlated discont rate news. Accordingly, we now
explore the implications of our empirical results for portfolio risk and optimal international
portfolio diversi�cation at long horizons.

5.1 The Risk of Globally Diversi�ed Stock and Bond Portfolios
Across Investment Horizons

We start with an analysis of risk across investment horizons of all-equity and all-bond port-
folios. We consider both equal-weighted (EW) and value-weighted (VW) portfolios of the
seven markets in our sample. We set the weights for both the all-equity and the all-bond
value-weighted portfolios equal to the relative stock market capitalization values at the in-
ception of our sample in January 1986: 1.51% (Australia), 2.83% (Canada), 5.22% (France),
5.07% (Germany), 16.09% (Japan), 10.38% (U.K.), and 58.88% (U.S.). This choice of weights
implies that the results for the value-weighted portfolios are largely dominated by the U.S.
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market experience.

Figure 6 presents results for the VW and EW all-equity portfolios. Panel A in Figure 6

plots the percent annualized standard deviation of portfolio excess returns,
√

(12/k)Vt[xr
(k)
p,t+k]

times 100, implied by our VAR estimates for each sample as a function of investment horizon.
The panel shows that the short-run risk of a globally diversi�ed equity portfolio is about the
same in both subperiods but that the long-run risk is systematically lower in the late sample
than in the early sample. For example, at a 1-month horizon, the risk of the VW portfolio
is similar in both samples�14.3% p.a. in the early sample and 14.8% in the late sample; at
a 25-year horizon, the risk of the portfolio is 9.3% p.a. in the early sample and 7.8% p.a. in
the late sample. This is an economically signi�cant di�erence, especially when compounded
over 25 years.

The portfolio risk decomposition (17) shows that to understand the changes in port-
folio risk across investment horizons we need to separate cross-country return correlation
e�ects from within-country return volatility e�ects. Panel B and Panel C report the results
from performing this decomposition. Panel B in Figure 6 plots the VAR-implied percent
annualized average within-country volatility of k-horizon excess returns, calculated as

ave−std(k) = 100×
√

12

k
×

N∑
i=1

(
wi∑N
i=1wi

)
σki ,

where σki = Vt[xr
(k)
i,t+k], and wi is equal to either 1/7 (EW portfolio) or market i capitalization

weight (VW portfolio).

Panel B shows that the average within-country excess return volatility declines as the
investment horizon increases in both samples. This re�ects the well-known e�ect of stock
return predictability at the country level. The panel shows that the average within-country
return volatility is lower in the late sample across all investment horizons and that the dif-
ference in excess return volatility between the late sample and the early sample is larger
at long horizons. This pattern re�ects both a slightly lower short-run return volatility and,
most importantly, a higher degree of stock return predictability (or mean-reversion) in the
late sample relative to the early sample.13 This is not surprising, since the early sample
includes the second half of the 1990's, a period of a sharp rise in valuations relative to funda-
mentals that weakened the empirical evidence on return predictability, while the late sample
includes the subsequent correction that strengthened the empirical evidence on stock return
predictability (Cochrane, 2008).

Panel C in Figure 6 plots the percent average cross-country correlation of k-horizon excess

13Note that we keep the slope coe�cients of the VAR the same across samples. Therefore this e�ect on
within-country return volatility is essentially the result of the correlation of unexpected excess stock returns
and shocks to expected excess stock returns becoming more strongly negative in the late sample. We also
know from Table 1 that the volatility of one-period stock returns is also somewhat smaller in the late sample.
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returns for each subperiod, calculated as

ave−corr(k) = 100×
N∑
i=1

N∑
j=i

(
wiwj∑N

i=1

∑N
j=iwiwj

)
γkij,

where γkij = Corrt[xr
(k)
i,t+k, xr

(k)
j,t+k], and wi is equal to either 1/7 (EW portfolio) or market i

capitalization weight (VW portfolio).

Panel C shows a highly signi�cant increase in short-run cross-country excess return cor-
relations in the late sample relative to the early sample from about 52% to about 72%,
consistent with the evidence shown in Table 3 and Figure 1. However, the average cross-
country excess return correlation declines as investment horizon increases, and it does so
more rapidly for the late sample. At long horizons, both samples exhibit a similar average
cross-country excess return correlation of about 35%.

The symmetric model of Section 3 is helpful to understand the patterns of cross-country
excess return correlations within each sample and across samples. This model shows that
both cash �ow news correlations and discount rate news correlations contribute similarly to
cross-county return correlations at short horizons, but that cash �ow news correlations dom-
inate cross-country correlations at long horizons. Cross-country excess return correlations
decline at long horizons in each sample because, as Table 4 shows, discount rate news explain
a large fraction of total cross-country excess return correlations, and the e�ect of correlated
discount rate news on cross-country return correlations subsides at long horizons. Table 4
also shows that discount rate news are signi�cantly more correlated across stock markets
in the late sample, while cross-country cash �ow news correlation are stable across periods.
This has resulted in a sharp increase in short-horizon cross-country correlations of excess
returns in the late sample relative to the early sample. However, as this e�ect subsides at
long horizons, the average cross-country correlation of excess returns converges to that in
the early sample.

In summary, both within-country e�ects (increased mean reversion in stock returns) and
cross-country e�ects (increased cross-country correlations of discount rate news) explain the
observed patterns in the risk of global equity portfolios across investment horizons and across
periods shown in Panel A of Figure 6.

There results raise the question of what change in long-run equity portfolio risk we might
have observed if only cross-country correlations of return news had changed from the early
sample to the late sample, while within-country volatilities had remained stable. To address
this question re-estimate the overall variance-covariance matrix of VAR innovations across
all countries in the late subperiod subject to the constraint that the variance-covariance ma-
trix of innovations for each country remains at the same values as in the early subperiod.14

14It is important to note that direct substitution of the within-country covariance matrices of VAR in-
novations in the late sample with those in the early sample does not guarantee that the resulting overall
variance-covariance matrix is properly de�ned in the sense that it is a positive-de�nite matrix. To ensure
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We then re-compute the same objects as in the unconstrained analysis.

Figure 7, which has a structure identical to that of Figure 6, reports the results from this
exercise. Panel A in the �gure shows that, holding within-country k-horizon return volatility
the same across both subperiods (as shown in Panel B), internationally diversi�ed equity
portfolios have become riskier in the late period relative to the early period at horizons up to
12 years. Panel C shows that this is exclusively the result of a signi�cant increase in cross-
country return correlations at those horizons. At longer horizons, cross-country k-horizon
return correlations are lower in the late subperiod, resulting in lower overall portfolio risk,
consistent with the fact we have documented that discount rate news accounts for most of
the increase in short-run cross-country return correlations. We interpret these results as
evidence that the increase in short-run cross-country return correlations in the late sample
has not resulted in increased risk of internationally diversi�ed portfolios at long horizons.

Figure 8 presents results for global bond portfolios. Panel A in the �gure shows that,
similar to equities, the percent annualized standard deviation of portfolio excess returns is
decreasing in investment horizon for both sample periods. However, unlike that of equities,
the risk of internationally diversi�ed bond portfolios is larger in the late sample at all invest-
ment horizons. Panel B shows that within-country e�ects cannot explain this increase, as
the annualized average within-country volatility of k-horizon excess returns on bonds is very
similar in both samples across all investment horizons. Thus the e�ect has to be entirely the
result of changes in the cross-country correlations of the news components of excess bond
returns. Panel C shows that indeed the average cross-country correlation of k-horizon excess
returns on bonds is much larger in the late sample than in the early sample for all horizons.

Once again, the symmetric model in Section 3 and the empirical results in Table 5
help understand the patterns shown in Figure 8. Table 5 shows that increased cross-country
correlations of cash �ow news�i.e., in�ation�are even more important than increased cross-
country correlations of discount rate news in explaining the increase in short-run cross-
correlations of bond returns. The model in Section 3 shows that cross-country correlations of
news on the persistent component of returns impactt k-horizon return correlations similarly
across all investment horizons. Therefore, the increase in the cross-country correlation of
in�ation has exacerbated the risk of internationally diversi�ed bond portfolios at all horizons
in the late period. Arguably the bene�ts of global portfolio diversi�cation in bonds has
declined in the late sample relative to the early sample.

5.2 Optimal Global Equity Portfolio Diversi�cation at Long Hori-
zons

Section 5.1 shows that the long-run risk of globally diversi�ed equity portfolios, measured
as the EW and VW portfolio return variance at long horizons, has not increased in the

this basic property of variance-covariance matrices we use semide�nite programming methods to re-estimate
the cross-country components of the overall variance-covariance matrix subject to the constraint the within-
country components take values equal those of the early sample. See Appendix G for a description of the
semide�nite programming method we use.
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2000-2013 period relative to the earlier 1986-1999 period, despite a signi�cant increase in
the cross-country correlations of one-period excess stock returns. This result holds even af-
ter controlling for the e�ects on long-run portfolio risk of declining long-run within-country
return variances. By contrast, the long-run risk of globally diversi�ed bond portfolios have
increased. These results suggest that the changes in the correlations of global equity and
bond markets that have taken place in the early XXI century have not diminished the ben-
e�ts of global portfolio diversi�cation for long-horizon equity investors, although they have
diminished the bene�ts of global bond portfolio diversi�cation.

We now explore this insight in the context of models of intertemporal portfolio choice.
Speci�cally, we compute the optimal intertemporal portfolio allocations and expected utility
implied by our estimates of return dynamics in each sample for two types of investors who
can invest in cash and global equities. The �rst one is the investor we consider in Section 3.4,
that is, an investor with power utility preferences over terminal wealth at a �nite horizon
to whom we will refer to as the �JV investor� (Jurek and Viceira, 2011). For calibration
purposes we set the investment horizon of the JV investor to 20 years and the value of the
coe�cient of relative risk aversion to 5. The second investor is an in�nitely lived investor
with Epstein-Zin utility over intermediate consumption to whom we will refer to as the �CCV
investor� (Campbell and Viceira 1999, and Campbell, Chan, and Viceira 2003). We set the
elasticity of intertemporal substitution of consumption of this investor to one, the coe�cient
of relative risk aversion to 5, and the time discount factor to 0.92. This choice of parameters
implies the the investor consumes optimally a constant fraction of his wealth every month
equal to 8% annually.15

In order to explore optimal portfolio allocations we need to take a stand on unconditional
expected returns and the risk free rate. In the spirit of the approach pioneered by Black and
Litterman (1992), we set the vector of unconditional expected excess returns and the risk free
rate such that the myopic or one-period mean-variance optimal portfolio allocation in the
early sample equals either the EW equity portfolio or the VW equity portfolio described in
Section 5.1, given the estimated variance-covariance of one-period returns. This assumption
allows us to understand how optimal portfolio allocations change across investment horizons
within each period, and across periods, for reasons related exclusively to changes in risk.

Table 9 reports optimal global equity portfolio allocations and Table 10 reports expected
utility for the two investors for each of the subperiods. The �rst numerical column in each
panel of Table 9 reports the mean optimal one-period (or mean-variance) allocation to stocks,
which is the same for both investors. The second column and the third column report the
vector of mean intertemporal hedging demands for the JV investor and the CCV investor
respectively. Table 10 reports expected utility expressed as a certainty equivalent of wealth
for a JV investor at two horizons (10 and 20 years), and expected utility per unit of wealth

15We solve for the optimal intertemporal portfolio allocation of this investor building on the approximate
solution methods of Campbell and Viceira (1999) and Campbell, Chan, and Viceira (2003). They show
that the optimal intertemporal portfolio policy for this investor is an a�ne function of the vector of state
variables similar to the solution in Jurek and Viceira (2011) that has two componets, a myopic or one-period
component and an intertemporal hedging component.
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for the CCV investor. Each panel in Table 10 reports two values of certainty equivalent
of wealth and expected utility for each investor. The �rst one is expected utility when the
investor can invest only in the U.S. stock market. The second one is expected utility when
the investor have access to all seven equity markets.

Panel A in Table 9 reports results for the early sample. By construction, the myopic
allocation is 100% invested in either the EW equity portfolio or the VW equity portfolio.
The total intertemporal hedging demand for stocks is positive and large for both investors, at
about 104% for the JV investor and 67% for the CCV investor. The intertemporal hedging
demand for the CCV investor is smaller than that for the JV investor because, although this
investor is in�nitely lived, his investment horizon is e�ectively shorter: The CCV investor
consumes a fraction of his wealth every period, while the JV investor only consumes at the
end of his long horizon of 20 years. Given our parametric assumptions, the duration of the
consumption liabilities the CCV investor is funding out of his wealth is about 13.5 years,
signi�cantly shorter than that of the JV investor, which is 20 years. The relative compo-
sition of the intertemporal hedging allocation across markets is similar for both investors,
with the U.S. stock market absorbing the largest portfolio share for both the EW and the
VW portfolio.

Panel A in Table 10 shows large gains in expected utility for long-horizon investors from
the ability to invest globally. The certainty equivalent of wealth for the JV investor and the
expected utility of consumption per unit for the CCV investor are both an order of mag-
nitude larger when these long-horizon investors have access to global equity markets than
when they are able to invest only in the U.S. stock market. Moreoer, for the JV investor,
the gains increase exponentially with investment horizon: At a 20-year horizon, the gain
from having access to seven markets is proportionally much larger than at a 10-year horizon.
These large bene�ts of diversi�cation are consistent with those reported in Jarek and Vi-
ceira (2011, Tables VI and VIII) and Campbell, Chan, and Viceira (2003, Table 5) for U.S.
investors who gain access to bonds when they can invest only in U.S. equities and cash.

Panel B in Table 9 reports the optimal equity portfolio allocations and expected utility
implied by our estimates of the return generating process in the late sample, holding uncondi-
tional expected excess returns and the risk free rate at the same values as in the early sample.
The increase in the cross-country correlations of one-period returns generates a one-period
myopic allocation with long and short positions. For example, the VW portfolio shows a
signi�cant increase of the short-run allocation to U.K. and Australian equities, funded by a
short position in German equities and cash. The investors optimally choose levered myopic
equity portfolios, illustrating the fact that increased correlations do not necessarily imply less
willingness to hold risky assets in a portfolio in the absence of borrowing and short-selling
constraints. Panel B also shows a signi�cant increase in intertemporal hedging demands for
stocks in the late sample, at 140% for the JV investor and 90% for the CCV investor in the
EW case. The corresponding panel in Table 10 shows that expected utility also increases
dramatically for both investors relative to the early sample.

The portfolio risk decomposition of Section 5.1 is helpful to understand the changes in
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intertemporal hedging demand and in expected utility in the late period with respect to the
early period. We have shown that the late sample is characterized by both a signi�cant
increase in cross-country correlations of one-period stock excess returns and a signi�cant
decrease in within-country volatility of stock excess returns at all horizons resulting from
increased mean reversion. The second factor implies more willingness to hold risky assets in
a portfolio for intertemporal hedging reasons and, as shown in Campbell and Viceira (1999),
it also implies large increases in expected utility. Therefore, within-country e�ects could ex-
plain the changes in intertemporal hedging demands and in expected utility across periods.

To test this hypothesis, Panel C in Table 9 reports optimal equity portfolio allocations in
the late sample holding constant within-country stock return predictability across samples.
Speci�cally, as in Section 5.1, we use semide�nite programming methods to re-estimate the
overall variance-covariance matrix of VAR innovations across all countries in the late sub-
period subject to the constraint that the elements of the within-country variance-covariance
matrix of innovations for each country remain at the same values as in the early subperiod.

Panel C in Table 9 shows that, under this constrained estimation, optimal myopic portfo-
lio demand in the late sample is somewhat smaller than that in the early sample, at 96% and
84% for the VW and EW portfolios respectively. Moreover, intertemporal hedging demands
stay about the same across both subperiods. The corresponding panel in Table 10 shows
that expected utility also remains at about the same values. This implies that the increases
reported in Panel B are exclusively a result of within-country e�ects, that is, of increased
mean reversion in stock returns at the country level in the late subperiod.

The results in Panel C of Table 9 and Table 10 also imply that the increase in cross-
country return correlations of stock returns in the late sample has not diminished the bene�ts
of global equity diversi�cation for long-term investors. This is so because this increase has
been driven primarily by �nancial integration or increased correlation of discount rates, and
we have shown in Section 3 that increased correlations of transitory discount rate news do
not imply an increase in portfolio risk at long horizons or a decline in the willingness of
long-term investors to hold risky assets. Because permanent cash �ows have not become
signi�cantly more correlated across countries in the late sample, long-run investors can still
bene�t from global investing to diversify cash �ow risk.

6 Conclusions

We have documented a substantial secular increase in the cross-country correlations of global
stock and bond returns since the turn of the 21st century and explored its implications for
long-run portfolio risk, optimal intertemporal global portfolio choice, and the bene�ts of
global portfolio diversi�cation in a framework with time-varying discount rates in which
asset valuations and returns vary over time in response to cash �ow news and to discount
rate news, both of which can be correlated across markets. We �nd that although this in-
crease implies a reduction in the bene�ts of global portfolio diversi�cation for short-horizon
investors, it does not imply a reduction of these bene�ts for long-horizon equity investors.
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Long run portfolio risk has not increased, optimal long-horizon equity portfolios are as glob-
ally diversi�ed and invest in equities as much as in the prior period with lower cross-country
return correlations, and the expected utility from holding global equity portfolios has not
declined for long-horizon investors.

To understand these results, we have built a stylized symmetrical model of global capital
markets, and shown that an increase in the cross-country correlation of discount rate news
has only a small impact on the long-run risk of a globally diversi�ed portfolio and in the
willingness of long-horizon investors to hold risky assets in their portfolios, while an increase
in the correlation of cash �ow news has a very signi�cant impact on both long-run portfolio
risk and willingness to hold risky assets. This di�erential impact on long-run portfolio risk
derives from the fact that cash �ow shocks are highly persistent shocks that a�ect valuations
and returns at all horizons, while discount rate shocks are transitory shocks whose impact
on valuations and returns dissipates at long horizons. We have shown that the e�ect of an
increase in the cross-country correlation of cash �ow news leads to a similar increase in the
cross-country correlations of returns at all horizons, while the e�ect of an increase in the
cross-country correlations of discount rate news declines as investment horizon increases. A
similar argument explains why an increase in the correlation of cash �ow news has a much
stronger negative impact on optimal portfolio demands at long horizons than a similar in-
crease in the correlation of discount rate news. When discount rate shocks become more
correlated across markets but cash �ow shocks don't, long horizon investors can still use
global diversi�cation to attenuate long-run cash �ow risk, which is the most relevant risk to
them. By contrast, short-horizon investors care equally about both about discount rate risk
and cash �ow risk.

We have shown that empirically the increase in cross-country correlations of global eq-
uity markets since the turn of the century has been driven primarily by an increase in the
correlation of discount rate news, which we attribute to the integration of global capital
markets. By contrast, we don't �nd strong evidence that the globalization of trading �ows
has led to an increase in the cross-country correlation of cash �ow shocks and through that
to a corresponding increase in the cross-country correlations of stock returns. Consistent
with our stylized model of global capital markets, we have shown that this evidence implies
that the globalization of capital markets has not lead to a signi�cant increase in the long-run
risk of globally diversi�ed equity portfolios nor to a decline in the expected utility and the
willingness of long-horizon investors to hold globally diversi�ed equity portfolios.

Moreover, we have also documented a decline in the long-run volatility of stock returns at
the country level which has resulted in a reduction in long-term portfolio risk and an increase
in the bene�ts of holding equities for long-term investors. Both factors together suggest that,
if anything, the bene�ts of holding global equity portfolios for long-horizon investors have
increased since the turn of the century. Long-term investors can still use global portfolios to
diversify away long-term equity cash �ow risk.

By contrast, we �nd that the signi�cant increase in the cross-country correlation of bond
returns has been driven by both increased correlation of discount rate news resulting from
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global capital markets integration, and increased correlation of nominal bond cash �ow news
resulting from increased correlation of in�ation across monetary areas. Long-run cross-
country bond return correlations have increased as much as short-run correlations, implying
that the bene�ts of international bond portfolio diversi�cation have declined as much for
long-horizon long-only bond investors as for short-horizon investors.

However, the increased correlation of global bond markets at short and long horizons
is bene�cial to investors with long-dated liabilities. The scope for hedging liabilities using
global bonds has increased. This can be particularly bene�cial to investors with large long-
dated liabilities whose own domestic bond markets are small.

Finally, we have shown that the well documented negative stock-bond correlation in
the U.S. since the turn of the century is a global phenomenon. We have shown that this
correlation is negative not only within countries but also across countries, suggesting that
the bene�ts of stock-bond diversi�cation have increased in all developed markets in recent
times.
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Figure 1: Stock and Bond Correlations Across Countries

This �gure plots average correlations of stock returns across countries and bond returns
across countries. Monthly averages are computed using pairwise return correlations across
seven di�erent countries over 3-year rolling windows (Australia, Canada, France, Germany,
Japan, United Kingdom, and United States). Returns are in U.S. Dollar currency-hedged
terms in excess of the three-month U.S. Treasury bill rate. The sample is from Jan 1986 to
Dec 2013.
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Figure 2: Stock-Bond Correlation Across andWithin Coun-

tries

This �gure plots average stock-bond correlations across countries and within countries.
Monthly averages are computed using pairwise return correlations within and across seven
di�erent countries over 3-year rolling windows (Australia, Canada, France, Germany, Japan,
United Kingdom, and United States). Returns are in U.S. Dollar currency-hedged terms in
excess of the three-month U.S. Treasury bill rate. The sample is from Jan 1986 to Dec 2013.
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Figure 3: Coe�cient on σxcDR,DR as a function of investment

horizon k

The �gures plots the coe�cient on σxcDR,DR = a(k; β, φ, ρ)2 + b(k; β, φ, ρ) as a function of
investment horizon k. We use parameters estimated from U.S. data for calibration: β =
0.0121, φ = 0.9864 , ρ = 0.9982. The expressions for a(k; β, φ, ρ) and b(k; β, φ, ρ) are given
in the Appendix.
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Figure 4: Annualized portfolio risk as a function of invest-

ment horizon

The �gure plots
√
Vt(r

(k)
p,t+k)/k as a function of investment horizon k (months). We compare

the term structure of this conditional standard deviation for 3 scenarios: (1) Baseline case
with zero cross-country return news correlations, both for CF news and DR news. (2) CF
news integration case, where cross-country return correlations come from positive cross-
country CF news correlations; cross-country correlations of DR news are zero. (3) DR
integration case, where cross-country return correlations come from positive cross-country
DR news correlation; cross-country correlations of CF news are zero. To make Scenarios 2
and 3 comparable, we set the cross-country correlation of one-period returns at the same
value (0.07). Panel A plots portfolio risk in each scenario for a portfolio of two symmetric
countries, and Panel B for a portfolio of seven countries.

(a) Panel A: two symmetric countries (b) Panel B: seven symmetric countries
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Figure 5: Optimal allocation to risky assets as a function

of time remaining to terminal date

The �gure plots optimal allocation to risky assets as a function of time remaining to terminal
date. The total optimal allocation is the sum of two parts: myopic allocation (equals the
intercept at τ = 1) and hedging allocation. The investor has horizon of k = 800 and
rebalance his allocation each period. The x-axis τ is the time remaining to the terminal
date. We compare the term structure of optimal allocation to risky assets across the same 3
scenarios described in Figure 4. We set the expected excess returns so that in the benchmark
case, the myopic investor (τ = 1) allocate 1/N to each risky asset (50% for N = 2 and 14.3%
for N = 7) and zero to cash. The expected excess returns are kept the same across the three
cases to make them comparable. Panel A plots optimal allocation in each case for a portfolio
of two symmetric countries, and Panel B for a portfolio of seven countries.

(c) Panel A: two symmetric countries (d) Panel B: seven symmetric countries

40



Figure 6: All-equity portfolio risk as a function of invest-

ment horizon

The �gure compares the early sample (1986.01-1999.12) and late sample (2000.01-2013.12)
all-equity portfolio risk across investment horizons. Panel A plots the annualized conditional
standard deviation of portfolio excess returns. Panel B plots the average (across N countries)
annualized k-period conditional volatility of excess returns. Panel C plots the pairwise
average of cross-country k-period excess returns conditional correlation. Each panel includes
the results for value-weighted and equal-weighted portfolios.

Panel A: Annualized conditional standard deviation of portfolio excess returns
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Panel B: Average annualized k-period conditional volatility of excess returns

Panel C: Pairwise average of cross-country k-period excess returns conditional

correlation
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Figure 7: All-equity portfolio risk as a function of invest-

ment horizon, controlling for within-country volatility

The �gure compares the early sample (1986.01-1999.12) and late sample (2000.01-2013.12)
all-equity portfolio risk across investment horizons. It di�ers from Figure 6 in that it es-
timates a hypothetical late sample covariance matrix to study the e�ect of an increase in
cross-country return correlations controlling for within-country e�ects. The estimation im-
poses two constraints: (a) all state variables have the same volatility in the early and late
samples; and (b) within-country correlations are the same in the early and late samples.
Given these two constraints, we estimate the cross-country correlations in the late sample
covariance matrix, by minimizing the distance between late sample hypothetical covariance
matrix and actual covariance matrix. To guarantee the estimated hypothetical covariance
matrix is well behaved, we use the semide�nite programming (SDP) methodology. Panel
A plots the annualized conditional standard deviation of portfolio excess returns. Panel B
plots the average (across N countries) annualized k-period conditional volatility of excess
returns. Panel C plots the pairwise average of cross-country k-period excess returns con-
ditional correlation. Each panel includes the results for value weighted and equal weighted
portfolios.

Panel A: Annualized conditional standard deviation of portfolio excess returns
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Panel B: Average annualized k-period conditional volatility of excess returns

Panel C: Pairwise average of cross-country k-period excess returns conditional

correlation
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Figure 8: Bond portfolio risk as a function of investment

horizon

The �gure compares the early sample (1986.01-1999.12) and late sample (2000.01-2013.12)
all-bond portfolio risk across investment horizons. Panel A plots the annualized conditional
standard deviation of portfolio excess returns. Panel B plots the average (across N countries)
annualized k-period conditional volatility of excess returns. Panel C plots the pairwise
average of cross-country k-period excess returns conditional correlation. Each panel includes
the results for value weighted and equal weighted portfolios.

Panel A: annualized conditional standard deviation of portfolio excess returns
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Panel B: Average annualized k-period conditional volatility of excess returns

Panel C: Pairwise average of cross-country k-period excess returns conditional

correlation
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Table 1: Summary Statistics

Whole Sample: January 1986 to December 2013
Stocks

AUS CAN FRA GER JPN UKI USA
Mean 5.8% 3.8% 4.0% 2.4% -2.0% 5.2% 5.9%

Volatility 17.7% 15.8% 20.0% 22.2% 20.4% 16.1% 15.7%
Sharpe Ratio 0.32 0.24 0.20 0.11 -0.10 0.32 0.37

Bonds
AUS CAN FRA GER JPN UKI USA

Mean 5.8% 3.9% 3.9% 2.5% 0.7% 4.4% 3.6%
Volatility 6.8% 6.3% 5.6% 5.2% 5.5% 6.5% 6.4%

Sharpe Ratio 0.85 0.63 0.71 0.48 0.13 0.67 0.57

Early Sample: January 1986 to December 1999
Stocks

AUS CAN FRA GER JPN UKI USA
Mean 6.0% 4.2% 9.0% 4.3% -1.3% 8.7% 10.5%

Volatility 21.2% 15.5% 21.1% 21.5% 21.9% 17.4% 15.3%
Sharpe Ratio 0.28 0.27 0.43 0.20 -0.06 0.50 0.69

Bonds
AUS CAN FRA GER JPN UKI USA

Mean 7.1% 4.2% 4.3% 1.6% 1.6% 5.2% 3.2%
Volatility 7.6% 7.1% 5.9% 5.2% 6.8% 7.5% 6.4%

Sharpe Ratio 0.93 0.59 0.74 0.30 0.23 0.70 0.50

Late Sample: January 2000 to December 2013
Stocks

AUS CAN FRA GER JPN UKI USA
Mean 5.5% 3.5% -1.0% 0.5% -2.7% 1.6% 1.3%

Volatility 13.6% 16.1% 18.7% 23.0% 18.8% 14.7% 16.0%
Sharpe Ratio 0.40 0.21 -0.05 0.02 -0.14 0.11 0.08

Bonds
AUS CAN FRA GER JPN UKI USA

Mean 4.5% 3.7% 3.6% 3.4% -0.1% 3.5% 4.1%
Volatility 5.9% 5.2% 5.3% 5.3% 3.8% 5.4% 6.5%

Sharpe Ratio 0.75 0.70 0.67 0.64 -0.03 0.65 0.63

This table reports summary statistics of monthly bond and stock returns for the whole sample (January 1986 to
December 2013), early sample (January 1986 to December 1999) and late sample (January 2000 to December 2013).
Estimates of means, volatilities, and Sharpe Ratios are all scaled to annualized units. Returns are in U.S. Dollar
currency-hedged terms in excess of the three-month U.S. Treasury bill rate.
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Table 2: Return Correlations
Table 2.A - Correlations (Jan. 1986 - Dec. 2013)

Bonds Stocks
AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.55 1.00
FRA 0.45 0.52 1.00
GER 0.46 0.58 0.86 1.00
JPN 0.25 0.35 0.34 0.41 1.00
UKI 0.46 0.60 0.67 0.72 0.37 1.00
USA 0.54 0.73 0.60 0.64 0.34 0.59 1.00

Stocks

AUS 0.22 -0.03 -0.05 -0.10 -0.09 -0.04 -0.16 1.00
CAN 0.08 0.12 -0.07 -0.11 -0.03 -0.03 -0.07 0.63 1.00
FRA -0.02 0.00 0.11 -0.01 0.05 0.06 -0.14 0.56 0.64 1.00
GER -0.04 -0.04 -0.03 -0.08 -0.03 -0.05 -0.20 0.55 0.61 0.83 1.00
JPN -0.06 0.04 0.01 -0.05 0.03 -0.02 -0.11 0.44 0.47 0.51 0.44 1.00
UKI 0.12 0.09 0.04 -0.03 0.02 0.16 -0.07 0.66 0.69 0.74 0.69 0.46 1.00
USA 0.04 0.11 -0.02 -0.10 0.02 0.01 -0.03 0.62 0.79 0.71 0.70 0.48 0.79 1.00

Table 2.B - Correlations (Jan. 1986 - Dec. 1999)
Bonds Stocks

AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.44 1.00
FRA 0.33 0.39 1.00
GER 0.31 0.46 0.78 1.00
JPN 0.17 0.34 0.32 0.43 1.00
UKI 0.32 0.51 0.58 0.63 0.36 1.00
USA 0.41 0.68 0.50 0.52 0.38 0.47 1.00

Stocks

AUS 0.44 0.01 0.02 -0.01 -0.12 0.04 -0.11 1.00
CAN 0.38 0.30 0.07 0.06 0.02 0.12 0.11 0.64 1.00
FRA 0.18 0.12 0.40 0.30 0.09 0.27 0.10 0.48 0.56 1.00
GER 0.24 0.13 0.23 0.24 -0.03 0.12 0.06 0.50 0.55 0.75 1.00
JPN 0.09 0.17 0.13 0.10 0.13 0.11 0.06 0.34 0.39 0.42 0.32 1.00
UKI 0.37 0.20 0.21 0.17 0.03 0.36 0.11 0.64 0.66 0.62 0.58 0.37 1.00
USA 0.34 0.35 0.19 0.12 0.05 0.21 0.26 0.57 0.79 0.59 0.55 0.36 0.73 1.00

Table 2.C - Correlations (Jan. 2000 - Dec. 2013)
Bonds Stocks

AUS CAN FRA GER JPN UKI USA AUS CAN FRA GER JPN UKI USA

Bonds

AUS 1.00
CAN 0.74 1.00
FRA 0.62 0.72 1.00
GER 0.67 0.76 0.95 1.00
JPN 0.41 0.40 0.40 0.43 1.00
UKI 0.70 0.78 0.81 0.87 0.40 1.00
USA 0.72 0.82 0.70 0.75 0.32 0.77 1.00

Stocks

AUS -0.22 -0.12 -0.18 -0.24 -0.01 -0.21 -0.26 1.00
CAN -0.29 -0.11 -0.21 -0.26 -0.12 -0.21 -0.24 0.68 1.00
FRA -0.33 -0.20 -0.25 -0.33 -0.05 -0.26 -0.40 0.72 0.73 1.00
GER -0.37 -0.25 -0.30 -0.36 -0.05 -0.28 -0.43 0.66 0.67 0.93 1.00
JPN -0.29 -0.17 -0.14 -0.21 -0.18 -0.23 -0.30 0.63 0.57 0.62 0.57 1.00
UKI -0.26 -0.09 -0.18 -0.24 -0.02 -0.18 -0.28 0.73 0.73 0.88 0.81 0.60 1.00
USA -0.32 -0.19 -0.24 -0.30 -0.05 -0.25 -0.30 0.74 0.80 0.85 0.83 0.61 0.87 1.00

This table reports sample correlations of monthly bond and stock returns for the whole sample (January 1986 to
December 2013), early sample (January 1986 to December 1999) and late sample (January 2000 to December 2013).
Returns are in U.S. Dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.
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Table 3: Correlation Summary Statistics

Full Period
Bonds Stocks Bonds Stocks

Bonds 1.00 Bonds 0.52
Stocks 0.07 1.00 Stocks -0.03 0.62

Early Sample
Bonds Stocks Bonds Stocks

Bonds 1.00 Bonds 0.44
Stocks 0.30 1.00 Stocks 0.13 0.54

Late Sample
Bonds Stocks Bonds Stocks

Bonds 1.00 Bonds 0.65
Stocks -0.23 1.00 Stocks -0.22 0.72

Di�erence
Bonds Stocks Bonds Stocks

Bonds 0.00 Bonds 0.21
Stocks -0.53 0.00 Stocks -0.35 0.18

This table summarizes the individual country-pair correlations found in Tables 2.A, 2.B, and 2.C. Overall average
correlations are computed within and across countries for the full period as well as for each subperiod.
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Table 4: Return Correlation Decomposition (Stocks Across Countries)

Component Correlations Component Contributions
CF (s) RR (s) ER (s) CF (s) RR (s) ER (s)

Subperiod 1 CF (s) 0.20 CF (s) 0.10 0.02 0.10
RR (s) -0.05 0.33 RR (s) 0.02 0.04 -0.10
ER (s) -0.16 -0.26 0.39 ER (s) 0.10 -0.10 0.35

Subperiod 2 CF (s) 0.24 CF (s) 0.09 -0.02 0.16
RR (s) 0.13 0.59 RR (s) -0.02 0.07 -0.21
ER (s) -0.23 -0.55 0.59 ER (s) 0.16 -0.21 0.68

Di�erence CF (s) 0.04 CF (s) -0.01 -0.04 0.07
RR (s) 0.18 0.26 RR (s) -0.04 0.03 -0.11
ER (s) -0.07 -0.29 0.21 ER (s) 0.07 -0.11 0.33

CF (s) RR (s) ER (s)
p-values CF (s) 0.18

(bootstrap) RR (s) 0.00 0.00
ER (s) 0.11 0.00 0.01

p-values CF (s) 0.34
(Fisher r-to-z) RR (s) 0.05 0.00

ER (s) 0.26 0.00 0.01

This table decomposes the sources of global stock return correlations. Correlations among individual stock return
components (i.e., cash-�ow, real-rate, and expected-return news) across countries are shown in the leftmost columns.
Contributions of these components to unexpected stock return correlations across countries (using stock return
innovations from the estimated VARs) are broken down in the rightmost columns. Note that values in the total
column should approximately equal their corresponding correlations found in Table 3. Estimates are reported for
each subperiod as well as the di�erence between the two subperiods. Tests for signi�cant correlation di�erences
between subperiods are based on bootstrap and Fisher r-to-z methods for calculating p-values.
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Table 5: Return Correlation Decomposition (Bonds Across Countries)

Component Correlations Component Contributions
CF (b) RR (b) ER (b) CF (b) RR (b) ER (b)

Subperiod 1 CF (b) 0.29 CF (b) 0.02 0.06 0.00
RR (b) 0.30 0.30 RR (b) 0.06 0.13 0.01
ER (b) -0.03 0.01 0.21 ER (b) 0.00 0.01 0.12

Subperiod 2 CF (b) 0.50 CF (b) 0.06 0.12 -0.04
RR (b) 0.52 0.57 RR (b) 0.12 0.26 -0.04
ER (b) -0.12 -0.08 0.37 ER (b) -0.04 -0.04 0.20

Di�erence CF (b) 0.21 CF (b) 0.03 0.06 -0.03
RR (b) 0.23 0.26 RR (b) 0.06 0.12 -0.06
ER (b) -0.09 -0.09 0.15 ER (b) -0.03 -0.06 0.08

CF (b) RR (b) ER (b)
p-values CF (b) 0.00

(bootstrap) RR (b) 0.00 0.00
ER (b) 0.13 0.11 0.01

p-values CF (b) 0.01
(Fisher r-to-z) RR (b) 0.01 0.00

ER (b) 0.21 0.21 0.06

This table decomposes the sources of global bond return correlations. Correlations among individual bond return
components (i.e., cash-�ow, real-rate, and expected-return news) across countries are shown in the leftmost columns.
Contributions of these components to unexpected bond return correlations across countries (using bond return
innovations from the estimated VARs) are broken down in the rightmost columns. Note that values in the total
column should approximately equal their corresponding correlations found in Table 3. Estimates are reported for
each subperiod as well as the di�erence between the two subperiods. Tests for signi�cant correlation di�erences
between subperiods are based on bootstrap and Fisher r-to-z methods for calculating p-values.
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Table 6: Return Correlation Decomposition (Bonds vs. Stocks Within Countries)

Component Correlations Component Contributions
CF(s) RR(s) ER(s) CF(s) RR(s) ER(s)

Subperiod 1 CF (b) -0.08 -0.21 -0.39 CF (b) 0.03 0.09 -0.18
RR (b) 0.89 0.98 -0.22 RR (b) 0.14 0.24 -0.45
ER (b) -0.58 -0.61 0.46 ER (b) 0.19 -0.07 0.32

Subperiod 2 CF (b) 0.14 0.01 -0.38 CF (b) -0.03 0.10 -0.28
RR (b) 0.87 0.99 -0.18 RR (b) -0.01 0.24 -0.63
ER (b) -0.78 -0.85 0.37 ER (b) 0.17 -0.08 0.32

Di�erence CF (b) 0.22 0.22 0.01 CF (b) -0.06 0.00 -0.10
RR (b) -0.02 0.01 0.03 RR (b) -0.15 0.01 -0.18
ER (b) -0.19 -0.24 -0.09 ER (b) -0.02 -0.01 0.00

CF(s) RR(s) ER(s)
p-values CF (b) 0.00 0.00 0.48

(bootstrap) RR (b) 0.17 0.00 0.32
ER (b) 0.00 0.00 0.13

p-values CF (b) 0.02 0.02 0.47
(Fisher r-to-z) RR (b) 0.22 0.01 0.37

ER (b) 0.00 0.00 0.16

This table decomposes the sources of global bond-stock return correlations within countries. Correlations among
individual return components (i.e., cash-�ow, real-rate, and expected-return news) within countries are shown in the
leftmost columns. Contributions of these components to unexpected bond-stock return correlations within countries
(using return innovations from the estimated VARs) are broken down in the rightmost columns. Note that values
in the total column should approximately equal their corresponding correlations found in Table 3. Estimates are
reported for each subperiod as well as the di�erence between the two subperiods. Tests for signi�cant correlation
di�erences between subperiods are based on bootstrap and Fisher r-to-z methods for calculating p-values.
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Table 7: Return Correlation Decomposition (Bonds vs. Stocks Across Countries)

Component Correlations Component Contributions
CF(s) RR(s) ER(s) CF(s) RR(s) ER(s)

Subperiod 1 CF (b) -0.03 -0.05 -0.19 CF (b) 0.01 0.03 -0.08
RR (b) 0.31 0.32 0.01 RR (b) 0.03 0.08 -0.17
ER (b) -0.26 -0.24 0.17 ER (b) 0.11 0.01 0.10

Subperiod 2 CF (b) 0.15 0.14 -0.28 CF (b) -0.03 0.06 -0.19
RR (b) 0.53 0.58 -0.07 RR (b) -0.05 0.14 -0.41
ER (b) -0.51 -0.54 0.21 ER (b) 0.13 -0.02 0.17

Di�erence CF (b) 0.18 0.19 -0.09 CF (b) -0.04 0.03 -0.11
RR (b) 0.22 0.26 -0.08 RR (b) -0.08 0.06 -0.23
ER (b) -0.26 -0.30 0.04 ER (b) 0.01 -0.03 0.07

CF(s) RR(s) ER(s)
p-values CF (b) 0.00 0.00 0.03

(bootstrap) RR (b) 0.00 0.00 0.13
ER (b) 0.00 0.00 0.34

p-values CF (b) 0.05 0.04 0.20
(Fisher r-to-z) RR (b) 0.01 0.00 0.22

ER (b) 0.00 0.00 0.35

This table decomposes the sources of global bond-stock return correlations across countries. Correlations among
individual return components (i.e., cash-�ow, real-rate, and expected-return news) across countries are shown in the
leftmost columns. Contributions of these components to unexpected bond-stock return correlations across countries
(using return innovations from the estimated VARs) are broken down in the rightmost columns. Note that values
in the total column should approximately equal their corresponding correlations found in Table 3. Estimates are
reported for each subperiod as well as the di�erence between the two subperiods. Tests for signi�cant correlation
di�erences between subperiods are based on bootstrap and Fisher r-to-z methods for calculating p-values.
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Table 8: Average R2 using PCs as global factors

Panel A: Stocks
All Sub-period 1 Sub-period 2 Di�erence

Currency Hedged Stock Returns 0.67 0.60 0.74 0.14
Unexpected Stock Returns 0.67 0.58 0.76 0.18

CF News (Stocks) 0.39 0.36 0.43 0.06
RR News (Stocks) 0.55 0.42 0.67 0.25
RP News (Stocks) 0.55 0.44 0.66 0.21

Panel B: Bonds
All Sub-period 1 Sub-period 2 Di�erence

Currency Hedged Bond Returns 0.67 0.59 0.75 0.16
Unexpected Bond Returns 0.62 0.55 0.70 0.15

CF News (Bonds) 0.45 0.31 0.59 0.28
RR News (Bonds) 0.54 0.42 0.65 0.23
RP News (Bonds) 0.41 0.38 0.45 0.07

This table applies the Pukthuanthong-Roll methodology to realized returns, unexpected returns and the three news
components of returns. For a given return or news component series, we �nd the �rst three principal components
every year and obtain the R2 from a simple least squares regression using PCs as global factors. The table reports
average R2. Panel A corresponds to stocks, and Panel B corresponds to bonds.
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Table 9: Optimal global equity portfolio allocations

Value Weight Portfolio Equal Weight Portfolio

Country Myopic JV hedging CCV hedging Myopic JV hedging CCV hedging
demand demand at 20 yr demand demand demand at 20 yr demand

AUS 1.51% 12.82% 6.38% 14.29% 21.87% 12.66%
Panel A: CAN 2.83% 11.49% 7.65% 14.29% 15.98% 10.91%

Early Sample FRA 5.22% -5.57% -3.19% 14.29% -5.11% -3.26%
GER 5.07% 19.46% 12.09% 14.29% 27.37% 16.95%
JPN 16.09% 17.07% 11.20% 14.29% 17.36% 11.25%
UKI 10.38% -0.35% 0.42% 14.29% -1.15% 0.72%
USA 58.88% 48.96% 32.21% 14.29% 26.38% 16.94%
Total 100.00% 103.89% 66.74% 100.00% 102.71% 66.16%

AUS 31.54% 33.61% 24.94% 93.35% 80.30% 58.49%
CAN 2.59% 18.20% 10.19% 15.19% 33.63% 21.54%
FRA 4.74% 27.21% 19.55% 22.12% 32.75% 23.93%

Panel B: GER -36.15% -17.83% -15.02% -8.99% -3.48% -3.68%
Late Sample JPN 3.91% 9.80% 3.81% -5.46% 5.79% 0.14%

UKI 49.40% 10.75% 7.60% 52.94% 9.31% 5.57%
USA 59.83% 57.76% 38.73% -43.17% -0.66% -4.08%
Total 115.85% 139.50% 89.81% 125.97% 157.64% 101.90%

AUS -9.02% 6.58% 3.81% 11.52% 5.87% 3.79%
CAN 25.22% 5.05% 3.87% 28.37% 3.66% 2.73%

Panel C: FRA -1.72% 16.50% 9.02% 14.67% 15.23% 8.58%
Late Sample GER -20.46% 22.30% 11.11% 7.28% 23.30% 12.69%
(Hypothetical JPN 1.34% 10.52% 6.14% -0.35% 8.99% 5.03%
Covariance UKI 18.80% 0.45% -0.34% 16.98% 0.44% -0.41%
Matrix) USA 82.46% 44.33% 32.04% 6.18% 59.10% 39.18%

Total 96.63% 105.74% 65.65% 84.64% 116.59% 71.59%

The table reports optimal global equity portfolio allocations by �JV� investor and �CCV� investor. The myopic
demand is the allocation of those two investors at investment horizon 1. An investor's allocation is the sum of
myopic demand and hedging demand. We report the JV hedging demand for an investor at horizon of 20 years (240
months). We compare across 3 scenarios: optimal allocation in early sample (Panel A), late sample (Panel B) and
late sample with hypothetical covariance matrix that controls for within-country correlation (Panel C). To make it
comparable, we �x the monthly implied excess returns across these 3 scenarios. We set implied excess returns for
value weight portfolio such that investor hold the myopic demand equal to market cap weight, and for equal weight
portfolio such that investor hold the myopic demand equal to 1/N in each country. �Total� allocation is the sum of
the allocations to each country.

9



Table 10: Expected Utility

Value Weight Portfolio Equal Weight Portfolio

Number of JV WCE CCV E[Vt] JV WCE CCV E[Vt]

Countries K=120 K=240 K=120 K=240

Panel A: 7 82.08 11861.95 0.078 108.62 11668.84 0.083

Early Sample 1 4.00 34.52 0.011 3.24 22.48 0.009

Panel B: 7 111.84 2380750.84 0.171 160.45 3272444.57 0.222

Late Sample 1 3.88 37.30 0.013 3.08 22.93 0.010

Panel C: Late Sample 7 79.92 11291.24 0.076 116.33 15737.17 0.079

(Hypothetical 1 4.00 34.52 0.011 3.24 22.48 0.009

Covaricnce Matrix)

The table reports the expected utility by �JV� investor and �CCV� investor, with the same optimal portfolio
allocation as reported in Table 9 (across the 3 scenarios). The CCV investor has Epstein-Zin preference and the

expected value function de�ned as E[Vt] ≡ Ut

Wt
= (1 − δ)−ψ/(1−ψ)

(
Ct

Wt

)1/(1−ψ)
. We report the expected value

function for CCV investor in the Table across the 3 scenarios (with EIS ψ → 1 and RRAγ = 5). The JV investor's
utility is power utility de�ned on terminal wealth Et[

1
1−γW

1−γ
t+K ]. We assume investor has initial wealth of one dollar

and look at investment horizons of 10 years (120 months) and 20 years (240 months). We report the certainty
equivalent for the JV investor (with RRAγ = 5). The results are obtained by Monte Carlo simulation using 2,000
VAR paths sampled using the method of antithetic variates. The certainty equivalent of wealth is computed by

evaluating the mean utility realized across the simulated paths and computing, WCE = u−1
(
E[u(W̃t+K)]

)
.
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Appendix

Appendix A. Calculating News Components

A.1 Excess Bond Returns (3 News Components)

De�ne the log one-period nominal return on a nominal n-period coupon bond as

r$
n,t+1 = log

(
1 +R$

n,t+1

)
= log (Pn−1,t+1 + C)− log (Pn,t)

=pn−1,t+1 − pn,t + log (1 + exp (c− pn−1,t+1))

≈k + ρbpn−1,t+1 + (1− ρb) c− pn,t, (1)

where ρb = 1

1+exp(c−p)
and k = − log (ρb) − (1− ρb) log

(
1
ρb
− 1
)
. Solving forward and imposing the terminal condition that

pn−j,t+j |j=n = 0, we get that

pn,t = (k + (1− ρb) c)

n−1∑
j=0

ρjb

− n−1∑
j=0

r$
n−j,t+1+jρ

j
b.

Plugging this expression in to the unexpected bond return from Eq. (1), we get that

(Et+1 − Et)
[
r$
n,t+1

]
= (Et+1 − Et) [ρbpn−1,t+1]− (Et+1 − Et) [pn,t]

= (Et+1 − Et) [ρbpn−1,t+1]

=− (Et+1 − Et)

n−1∑
j=1

r$
n−j,t+1+jρ

j
b

 . (2)

We can write r$
n,t+1 = xrn,t+1 + r$

f,t+1, where xrn,t+1 is the excess log 1-period return on a nominal n-period coupon bond

and r$
f,t+1 is the realized nominal return of the 1-period nominal bond, which is the same as the yield of the 1-period nominal

bond y1,t.
Decomposing the surprise bond return in Eq. (2) gives

(Et+1 − Et)
[
xrn,t+1 + r$

f,t+1

]
=− (Et+1 − Et)

n−1∑
j=1

ρjbxrn−j,t+1+j

− (Et+1 − Et)

n−1∑
j=1

ρjbr
$
f,t+1+j

 .
The LHS can be simpli�ed by noting that

(Et+1 − Et)
[
r$
f,t+1

]
= (Et+1 − Et) [y1,t] = 0.

To simplify the RHS, we simply note that the realized nominal return of the 1-period nominal bond is the realized real return
of the 1-period nominal bond plus realized in�ation: r$

f,t+1 = rf,t+1 + πt+1. The second term on the RHS is then

(Et+1 − Et)

n−1∑
j=1

ρjbr
$
f,t+1+j

 = (Et+1 − Et)

n−1∑
j=1

ρjbrf,t+1+j

+ (Et+1 − Et)

n−1∑
j=1

ρjbπt+1+j

 . (3)

Putting together the simpli�ed LHS and RHS, we have the following 3 news component decomposition for unexpected excess
bond returns:

rn,t+1 − Et [rn,t+1] = (Et+1 − Et) [xrn,t+1] = NCF,n,t+1 −NRR,n,t+1 −NRP,n,t+1

1



where

NCF,n,t+1 = −NINFL,n,t+1 ≡− (Et+1 − Et)

n−1∑
j=1

ρjbπt+1+j

 ,
NRR,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbrf,t+1+j

 , and
NRP,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbxrn−j,t+1+j

 . (4)

To extract the news components from the VAR, consider the vector of state variables

z̃t+1 = [xrs,t+1, xrn,t+1, dt+1 − pt+1, πt+1, y1,t+1, y10,t+1 − y1,t+1] . (5)

The main VAR equation is z̃t+1 = a + Az̃t + ut+1, which leads to Et [z̃t+j ] = Aj z̃t and (Et+1 − Et) [z̃t+j ] = Aj−1ut+1. It is
then straightforward to see how the decomposition can be written in VAR notation:

(Et+1 − Et) [xrn,t+1] =e2′ut+1,

NCF,n,t+1 =− e4′

n−1∑
j=1

ρjbA
j

ut+1,

NRR,n,t+1 =e5′

n−1∑
j=1

ρjbA
j−1

ut+1 − e4′

n−1∑
j=1

ρjbA
j

ut+1, and

NRP,n,t+1 =NCF,n,t+1 −NRR,n,t+1 − (Et+1 − Et) [xrn,t+1] .

We get NRR,n,t+1 by using Eq. (3) to express real rate news in terms of nominal rate news and in�ation news. Finally, we back
out NRP,n,t+1 as the residual.

A.2 Real Bond Returns (2 News Components)

With the excess bond returns decomposition in hand, the 2 news component decomposition follows.

(Et+1 − Et) [rn,t+1] = NCF,n,t+1 −NDR,n,t+1,

where

NCF,n,t+1 = −NINFL,n,t+1 ≡− (Et+1 − Et)

n−1∑
j=0

ρjbπt+1+j

 and

NDR,n,t+1 ≡ (Et+1 − Et)

n−1∑
j=1

ρjbrn−j,t+1+j

 . (6)

rn,t+1 is the realized real return of the nominal n-period coupon bond.
We can relate the 2 news component decomposition to the 3 news component decomposition as follows. The unexpected

excess bond return di�ers from the unexpected real bond return by an in�ation innovation term that we adjust for by indexing
NCF,n,t+1 from j = 0 instead of j = 1:

(Et+1 − Et) [xrn,t+1] = (Et+1 − Et) [rn,t+1 − rf,t+1]

= (Et+1 − Et) [rn,t+1]− (Et+1 − Et)
[
r$
f,t+1 − πt+1

]
= (Et+1 − Et) [rn,t+1]− (Et+1 − Et) [y1,t − πt+1]

= (Et+1 − Et) [rn,t+1] + (Et+1 − Et) [πt+1] .
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We can go from the penultimate line to the last line because the nominal short rate is in the information set at time t. Furthermore,
it is obvious from Eqs. (4) and (6) that NRR,n,t+1 + NRP,n,t+1 = NDR,n,t+1. Thus, keeping the same vector of state variables
zt+1 as in Eq. (5), we write the decomposition in VAR notation:

(Et+1 − Et) [rn,t+1] =e2′wt+1 − e4′ut+1,

NCF,n,t+1 =− e4′

n−1∑
j=0

ρjbA
j

ut+1 and

NDR,s,t+1 =NCF,n,t+1 − (Et+1 − Et) [rn,t+1] .

A.3 Excess Stock Returns (3 News Components)

We know the equation for the 3 news component decomposition for unexpected excess stock returns:

(Et+1 − Et) [xrs,t+1] = NCF,s,t+1 −NRR,s,t+1 −NRP,s,t+1,

where

NCF,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjs∆dt+1+j

 ,
NRR,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsrf,t+1+j

 , and
NRP,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsxrs,t+1+j

 . (7)

With the same vector of state variables zt+1 as in Eq. (5), we write the decomposition in VAR notation:

(Et+1 − Et) [xrs,t+1] =e1′ut+1,

NCF,s,t+1 = (Et+1 − Et) [xrs,t+1] +NRR,s,t+1 +NRP,s,t+1,

NRR,s,t+1 =e5′

 ∞∑
j=1

ρjsA
j−1

ut+1 − e4′

 ∞∑
j=0

ρjsA
j

ut+1, and

NRP,s,t+1 =e1′

 ∞∑
j=1

ρjsA
j

ut+1.

Similar to the case with bonds, we get NRR,n,t+1 by using an in�nite-sum version of Eq. (3) to express real rate news in terms
of nominal rate news and in�ation news. Note that the �rst term in NRR,s,t+1 starts from j = 1 instead of j = 0 because
(Et+1 − Et) [y1,t] = 0. Finally, we back out NCF,s,t+1 as the residual.

A.4 Real Stock Returns (2 News Components)

The main equation here is simply
(Et+1 − Et) [rs,t+1] = NCF,s,t+1 −NDR,s,t+1,

where

NCF,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjs∆dt+1+j

 and

NDR,s,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

ρjsrs,t+1+j

 . (8)
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We can relate the 2 news component decomposition to the 3 news component decomposition as follows. The unexpected
excess stock return di�ers from the unexpected real stock return by an innovation term for the realized real return of the 1-period
nominal bond:

(Et+1 − Et) [xrs,t+1] = (Et+1 − Et) [rs,t+1 − rf,t+1]

= (Et+1 − Et) [rs,t+1]− (Et+1 − Et) [rf,t+1] .

By adding this extra term back to NRR,s,t+1 and NRP,s,t+1, we get that − (Et+1 − Et) [rf,t+1] + NRR,s,t+1 + NRP,s,t+1 =
NDR,s,t+1. Since we also have that

(Et+1 − Et) [rf,t+1] = (Et+1 − Et)
[
r$
f,t+1 − πt+1

]
= (Et+1 − Et) [y1,t − πt+1]

=− (Et+1 − Et) [πt+1]

because the nominal short rate is in the information set at time t, we see that

(Et+1 − Et) [rs,t+1] = (Et+1 − Et) [xrs,t+1]− (Et+1 − Et) [πt+1] .

Similarly,
(Et+1 − Et) [πt+1] +NRR,s,t+1 +NRP,s,t+1 = NDR,s,t+1.

Keeping the same vector of state variables zt+1 as in Eq. (5), we write the decomposition in VAR notation:

(Et+1 − Et) [rs,t+1] =e1′ut+1 − e4′ut+1,

NCF,s,t+1 = (Et+1 − Et) [rs,t+1] +NDR,s,t+1 and

NDR,s,t+1 =e5′

 ∞∑
j=1

ρjsA
j−1

ut+1 − e4′

 ∞∑
j=1

ρjsA
j

ut+1 + e1′

 ∞∑
j=1

ρjsA
j

ut+1.
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Appendix B. Derivation of Results in Section 3.2

We want to derive the general formula for k period portfolio return variance, where the portfolio is constructed by holding equal
weight on N identical countries. The starting point is from our toy model{

ri,t+1 = µi1 + βisi,t + ui,t+1

si,t+1 = µi2 + φisi,t + usi,t+1

(9)

and we could also write the VAR residual in terms of news terms ui,t+1 = NCF,i,t+1 − NDR,i,t+1 and usi,t+1 = 1
λi
NDR,i,t+1,

where λi = ρβi
1−ρφi . The log portfolio return is

r
(k)
p,t+k = r

(k)
0 + α′t(r

(k)
t+k − r

(k)
0 l) +

1

2
αt(k)2σt(k)2 − 1

2
αt(k)Σt(k)αt(k) (10)

and the variance of k period portfolio return is

Vt[r
(k)
p,t+k] =

1

N
Vt[r

(k)
i,t+k] + (1− 1

N
)Ct[r

(k)
i,t+k, r

(k)
j,t+k] (11)

The term of interest in the expression is the cross-country covariance. Let's now derive the general expression for the covariance
term. Note that the 1 period return at t+ l could be written as

ri,t+l = µi1 + βisi,t+l−1 + ui,t+l

= µi1 + βi(φisi,t+l−2 + usi,t+l−1) + ui,t+l

· · ·

= µi1 + βiφ
l−1
i si,t + βi

l−1∑
m=1

φm−1
i usi,t+l−m + ui,t+l (12)

and

Ct[ri,t+l, rj,t+l] = Ct[βi

l−1∑
m=1

φm−1
i usi,t+l−m + ui,t+l, βj

l−1∑
m=1

φm−1
j usj ,t+l−m + uj,t+l]

= Ct[
βi
λi

l−1∑
m=1

φm−1
i NDR,i,t+l−m +NCF,i,t+l −NDR,i,t+l,

βj
λj

l−1∑
m=1

φm−1
j NDR,j,t+l−m +NCF,j,t+l −NDR,j,t+l] (13)

note that this is a symmetric model, thus we could ignore the subscript i and j in the expression. We make the assumption that
(for ∀l > 1, i 6= j)

Ct[NCF,i,t+l, NCF,j,t+l] ≡ σxcCF,CF

Ct[NCF,i,t+l, NDR,j,t+l] ≡ σxcCF,DR

Ct[NDR,i,t+l, NDR,j,t+l] ≡ σxcDR,DR
Thus we have

Ct[ri,t+l, rj,t+l] = [
β2

λ2

(1− (φ2)l−1)

1− φ2
+ 1]σxcDR,DR + σxcCF,CF − 2σxcCF,DR (14)

For the cross-period & cross-country covariance, we have

Ct[ri,t+l, rj,t+l+p] = Ct[βi

l−1∑
m=1

φm−1
i usi,t+l−m + ui,t+l, βj

l+p−1∑
m=1

φm−1
j usj ,t+l+p−m + uj,t+l+p]

= Ct[ui,t+l+βiusi,t+l−1+βiφiusi,t+l−2+· · ·+βiφl−2
i usi,t+1, βjφ

p−1
j usj ,t+l+βjφ

p
jusj ,t+l−1+βjφ

p+1
j usj ,t+l−2+· · ·+βjφl+p−2

j usj ,t+1]

= βφp−1Ct[ui,t+l, usj ,t+l] + β2φpCt[usi,t+l−1, usj ,t+l−1] + β2φp+2Ct[usi,t+l−2, usj ,t+l−2] + · · ·+ β2φp+2(l−2)Ct[usi,t+1, usj ,t+1]
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=
βφp−1

λ
(σxcCF,DR − σxcDR,DR) +

β2φp

λ2

1− (φ2)l−1

1− φ2
σxcDR,DR (15)

with p > 1. Using the results above, we could get the k period cross-country return covariance

Ct[r
(k)
i,t+k, r

(k)
j,t+k] =

k∑
l=1

Ct[ri,t+l, rj,t+l] + 2

k−1∑
l=1

k−l∑
p=1

Ct[ri,t+l, rj,t+l+p]

=

k∑
l=1

(
[
β2

λ2

(1− (φ2)l−1)

1− φ2
+ 1]σxcDR,DR + σxcCF,CF − 2σxcCF,DR

)
+2

k−1∑
l=1

k−l∑
p=1

(
βφp−1

λ
(σxcCF,DR − σxcDR,DR) +

β2φp

λ2

1− (φ2)l−1

1− φ2
σxcDR,DR

)

=

[
β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ k]σxcDR,DR + kσxcCF,CF − 2kσxcCF,DR


+2

k−1∑
l=1

(
β

λ(1− φ)
(1− φk−l)(σxcCF,DR − σxcDR,DR) +

β2

λ2

1− (φ2)l−1

1− φ2

φ(1− φk−l)
1− φ

σxcDR,DR

)

=

[
β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ k]σxcDR,DR + kσxcCF,CF − 2kσxcCF,DR


+2

(
β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
)(σxcCF,DR − σxcDR,DR) +

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)σxcDR,DR

)
= kσxcCF,CF + 2k

(
β

λ(1− φ)
(
k − 1

k
− φ

k

1− φk−1

1− φ
)− 1

)
σxcCF,DR

+

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k

σxcDR,DR

(16)
We further simplify the coe�cient on σxcDR,DR as

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k

= k

β2

λ2

(1− 1−(φ2)k

k(1−φ2) )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
− 1− (φ2)k−1

k(1− φ2)
)− 2

β

λ(1− φ)
(
k − 1

k
− φ1− φk−1

k(1− φ)
) + 1


= k

{
β2

λ2(1− φ)(1 + φ)

(
1−

1− (φ2)k

k(1− φ)(1 + φ)
+ 2

φ

(1− φ)
(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)
)

)
− 2

β

λ(1− φ)
(
k − 1

k
− φ

1− φk−1

k(1− φ)
) + 1

}
= k

{(
β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

+

(
β

λ(1− φ)

)2 (k − 1

k
− φ

1− φk−1

k(1− φ)

)2

− 2
β

λ(1− φ)
(
k − 1

k
− φ

1− φk−1

k(1− φ)
) + 1

}

= k

{(
β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

+

((
β

λ(1− φ)

)(
k − 1

k
− φ

1− φk−1

k(1− φ)

)
− 1

)2
}

If we de�ne a(k;β, φ, λ) ≡ 1−
(

β
λ(1−φ)

)(
k−1
k − φ

1−φk−1

k(1−φ)

)
then equation (11) could be written as

1

k
Ct[r

(k)
i,t+k, r

(k)
j,t+k] = σxcCF,CF +

[
a(k;β, φ, λ)2 + b(k;β, φ, λ)

]
σxcDR,DR − 2a(k;β, φ, λ)σxcCF,DR (17)

where

b(k;β, φ, λ) ≡
(

β

λ(1− φ)

)2
(
1− φ

1 + φ
−

1− (φ2)k

k(1 + φ)(1 + φ)
+ 2

φ

(1 + φ)

(
k − 1

k
+

(φk−1 − 1)(φ− φk−1)

k(1− φ)
−

1− (φ2)k−1

k(1− φ)(1 + φ)

)
−
(
k − 1

k
− φ

1− φk−1

k(1− φ)

)2
)

(18)

we could show that limk→+∞b(k;β, φ, λ) = 0.
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Finally we have the asymptotic result

limk→+∞
Ct[r

(k)
i,t+k, r

(k)
j,t+k]

k
= σxcCF,CF + 2(

β

λ(1− φ)
−1)σxcCF,DR+ (

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1)σxcDR,DR (19)

Now we derive the range of the coe�cients for variance-covariance terms in Eq (12), note that λ = ρβ
1−ρφ

β

λ(1− φ)
− 1 =

1− ρφ
ρ

1

(1− φ)
− 1 >

1

ρ
− 1 > 0

and
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1

=

(
β

λ(1− φ)

)2

− 2β

λ(1− φ)
+ 1

=

(
β

λ(1− φ)
− 1

)2

=

(
1− ρφ
ρ− ρφ

− 1

)2

we know that ρ and φ are close to but smaller than 1, and if we assume that ρ > 1
2−φ , we have

(
1−ρφ
ρ−ρφ − 1

)2

< 1. Thus we could

have

0 <
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1 < 1

under the assumption.

Numerical Calibration:

We try to use the formula to explain the positive gap between the portfolio variance of the benchmark case and the case in which
integration is purely driven by increased DR news correlation. In our benchmark case, we set σxcCF,CF = σxcCF,DR = σxcDR,DR = 0,
therefore

limk→+∞

√
Vt[r

(k)
p,t+k]/k = limk→+∞

√
1

N
Vt[r

(k)
i,t+k]/k (20)

. And for the integrated case purely driven by increased DR news correlation, we have

limk→+∞

√
Vt[r

(k)
p,t+k]/k = limk→+∞

√
1

N
Vt[r

(k)
i,t+k]/k + (1− 1

N
)(

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1)σxcDR,DR

(21)
and we have

β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ2)(1− φ)
− 2β

λ(1− φ)
+ 1 = 0.0175 (22)

therefore explains the positive gap between the two variance plot in our 2 country symmetric experiment.
The coe�cient of the term σxcDR,DR in Eq (11) standardized by k

1

k

β2

λ2

(k − 1−(φ2)k

1−φ2 )

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
(k − 1 +

(φk−1 − 1)(φ− φk−1)

1− φ
− 1− (φ2)k−1

1− φ2
)− 2

β

λ(1− φ)
(k − 1− φ1− φk−1

1− φ
) + k


(23)

is a function of investment horizon k, and the coe�cient annualized by k should converge to the value in Eq (15). The coe�cient
as a function of k is plotted in Figure 3.

In the next step, we calibrate the variance under the two cases (integration purely driven by increased cross country CF-CF/
DR-DR correlation). Under the limit case where k → +∞ we have

(
β2

λ2(1− φ2)
+

2β2φ

λ2(1− φ)2
− 2β

λ(1− φ)
+ 1)σxcDR,DR = 0.000010
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where σxcDR,DR = ρxcDR,DRσDRσDR and cross country DR correlation ρxcDR,DR = 0.25. Similarly we get

σxcCF,CF = ρxcCF,CFσCFσCF = 0.0012

where ρxcCF,CF = 0.335. In the calibration, we see that when integration purely driven by increased cross country CF-CF
correlation, the impact on portfolio variance is permanent. When the integration is purely driven by increased cross country
DR-DR correlation, the impact on portfolio variance is temporary, and dies out at long horizons. This matches with our intuition

perfectly, and we see from the calibration that ( β2

λ2(1−φ2) + 2β2φ
λ2(1−φ)2 −

2β
λ(1−φ) + 1)σxcDR,DR � σxcCF,CF .

Lemma: Assuming
(1) 0.5 < ρ < 1 and 0.5 < φ < 1 (trivially satis�ed for time preference factor ρ and persistence of state variable φ).

(2) ρ > 2φ2+3φ+1
φ2+3φ+2

We can conclude that the coe�cient in Equation (16) is positive and decreasing in k (these are su�cient but not necessary
conditions).

Proof: f(k) ≡ 1
k

(
β2

λ2

(k− 1−(φ2)k

1−φ2
)

1−φ2 + 2 β2φ
λ2(1−φ2)(1−φ) (k − 1 + (φk−1−1)(φ−φk−1)

1−φ − 1−(φ2)k−1

1−φ2 )− 2 β
λ(1−φ) (k − 1− φ 1−φk−1

1−φ ) + k

)
=
(
β2

λ2
1

1−φ2 (1− 1−(φ2)k

k(1−φ2) ) + 2 β2φ
λ2(1−φ2)(1−φ) (1− 1

k + (φk−1−1)(φ−φk−1)
k(1−φ) − 1−(φ2)k−1

k(1−φ2) )− 2 β
λ(1−φ) (1− 1

k −
φ
k

1−φk−1

1−φ ) + 1
)

= Const+ 1
k

(
−β

2

λ2

(1−φk)(1+φk)
(1−φ2)2 + 2 β2φ

λ2(1−φ2)(1−φ)
−1+φ2+(φk−1−1)(φ−φk−1)(1+φ)−1+φ2(k−1)

(1−φ2) + 2 β
λ(1−φ)

1−φk
1−φ

)
= Const+ 1

k

(
−β

2

λ2

(1−φk)(1+φk)
(1−φ2)2 + 2 β2φ

λ2(1−φ)
(2+φ−φk+1)(φk−1)

(1−φ2)2 + 2 β
λ(1−φ)

1−φk
1−φ

)
= Const+ 1

k
β
λ

1−φk
(1−φ)2

(
β
λ
φk(2φ2+φ−1)−2φ2−3φ−1

(1+φ)2(1−φ) + 2
)

where

Const =
β2

λ2

1

1− φ2
+ 2

β2φ

λ2(1− φ2)(1− φ)
− 2

β

λ(1− φ)
+ 1

=
β2(1− φ) + 2β2φ− 2βλ(1− φ2) + λ2(1− φ2)(1− φ)

λ2(1− φ2)(1− φ)

=
(β − λ(1− φ))

2

λ2(1− φ)2
> 0

Note that ρ and φ are close to but smaller than 1, and β
λ = 1−ρφ

ρ . We want to �nd su�cient conditions so that f(k) is

decreasing in k. Since f(k) = g(k)h(k) and f ′(k) = g′(k)h(k) + g(k)h′(k), f ′(k) < 0 ⇐⇒ g(k)h′(k) < −g′(k)h(k). Since
g(k) > 0, it will be su�cient if we could show that g′(k) < 0, h′(k) < 0 and h(k) > 0.

We �rst show that g(k) ≡ 1
k
β
λ

1−φk
(1−φ)2 decrease in k for φ ∈ (0, 1). Take the �rst order derivative we get g′(k) = β

λ
1

(1−φ)2
φk(1−k lnφ)−1

k2 .

To show g′(k) < 0, we need to show that m(φ) = φk(1− k lnφ)− 1 < 0 for φ ∈ (0, 1) and ∀k. This could be easily proved since
m′(φ) = −k2φk−1ln(φ) > 0 for φ ∈ (0, 1) and m(1) = 0. Thus g(k) is positive and decrease in k. Then we want to know the

property of h(k) = β
λ
φk(2φ2+φ−1)−2φ2−3φ−1

(1+φ)2(1−φ) + 2. We also notice given that 2φ2 + φ− 1 > 0 (which hold as long as φ > 0.5), h(k)

is decreasing in k. Thus it would be su�cient to prove the lemma if we know h(k) > 0 for ∀k. Since h(k) is decreasing in k, we

only need lim
k→∞

h(k) = −βλ
2φ2+3φ+1

(1+φ)2(1−φ) + 2 = − 1−ρφ
ρ(1−φ)

2φ2+3φ+1
(1+φ)2 + 2 > 0 to hold. This is equivalent to ρ > 2φ2+3φ+1

φ2+3φ+2 . Under this

condition, we know both g(k) and h(k) are positive and decreasing, therefore f(k) = g(k)h(k) is positive and decreasing in k.
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Appendix C. Symmatric Model for Asset Returns

We introduce a two-state-variable symmetric toy model for stocks, which includes excess stock return and dividend price ratio
as state variables. In particular, the dynamics of the variables are given by:

xrs,t+1 = λxr,0 + λxr,1(dt − pt) + vxr,t+1 (24)

dt+1 − pt+1 = λdp,0 + λdp,1(dt − pt) + vdp,t+1 (25)

We denote vt = [vxr,t, vdp,t]
′ and assume the VAR shocks are covariance stationary E(vt) = 0, E(vtvs) =

{
Σwc (t = s)

0 (t 6= s)
.The

superscript wc stands for within-country, and we use xc to represent cross-country in later part of the paper.

C.1 Connect VAR shocks to structural shocks

We decompose stock excess returns into two structural shocks: cash �ow news and discount rate news. In the toy model VAR
with two state variables, there's actually a one-to-one mapping from the structural shocks to VAR shocks. Recall from the
decomposition

NRR,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsr
N
f,t+1+j

 = (Et+1 − Et)

 ∞∑
j=0

ρjs

(
yN,$1,t+j − πt+1+j

) = 0

This is because the short nominal rate and in�ation are assume to be zero in our toy model.

NRP,t+1 ≡ (Et+1 − Et)

 ∞∑
j=0

ρjsxrs,t+1+j

 =
ρsλxr,1

1− ρsλdp,1
vdp,t+1

Therefore we have the discount rate news

NDR,t+1 = NRR,t+1 +NRP,t+1 =
ρsλxr,1

1− ρsλdp,1
vdp,t+1

and the cash �ow news is calculated from the identity

NCF,t+1 = (Et+1 − Et) [xrs,t+1] +NDR,t+1 = vxr,t+1 +
ρsλxr,1

1− ρsλdp,1
vdp,t+1

To summarize, we have [
NCF,t+1

NDR,t+1

]
=

[
1

ρsλxr,1
1−ρsλdp,1

0
ρsλxr,1

1−ρsλdp,1

] [
vxr,t+1

vdp,t+1

]
(26)

which connects the VAR shocks to structural shocks. Or in matrix notation εt+1 = Pvt+1, where εt+1 is the structural shock,
vt+1 the VAR shocks and P the transformation matrix.

C.2 From single country to a world with N identical countries

To further explore the bene�t of international diversi�cation, we design an experiment in a world with N clones (N-replica
world composed of N identical countries, and we use the US data to get empirical results). To explain the experiment in
detail, we �rst introduce some notations. Let Σwc ≡ V ar(vt+1) be the within country VAR variance-covariance matrix, and
Σxc ≡ Cov(vi,t+1, vj,t+1) (i 6= j) is de�ned as the cross-country VAR variance-covariance matrix (between country i and
j). Since all variance-covariance matrix Σ could be decomposed into volatility component G ≡ diag(Σ)1/2 and correlation
component (Γ ≡ diag(Σ)−1/2Σdiag(Σ)−1/2), we have the following decomposition for within-country and cross-country VAR
variance-covariance matrix

Σwc ≡ GΣΓwcΣ G′Σ (27)

Σxc ≡ GΣΓxcΣ G
′
Σ (28)

By using this notation we have implicitly assumed all countries are identical, i.e. Σwci = Σwcj and Σxcij = Σxclm (i 6= j, l 6= m),
which also implies GΣ,i = GΣ,j , ΓwcΣ,i = ΓwcΣ,j , ΓxcΣ,ij = ΓxcΣ,lm.
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Then the variance-covariance matrix for the global VAR shock in the N-replica economy is

Σglo =


Σwc Σxc · · · Σxc

Σxc Σwc · · · Σxc

...
... · · ·

...
Σxc Σxc · · · Σwc


with Σwc as diagonal blocks and Σxc as o� diagonal blocks . Later we use Σglo international portfolio allocation analysis.

C.3 Connect the VAR variance-covariance matrix to structural variance-covariance matrix in a
world with N identical countries

Let Ωwc ≡ V ar(εt+1) be the within country structural variance-covariance matrix, and Ωxc ≡ Cov(εi,t+1, εj,t+1) (i 6= j) is
de�ned as the cross-country structural variance-covariance matrix (between country i and j). Analogous to the decomposition
above, we have

Ωxc ≡ GΩΓxcΩ G
′
Ω (29)

Ωwc ≡ GΩΓwcΩ G′Ω (30)

From the relation εt+1 = Pvt+1, we can take cross-country covariance Cov(εi,t+1, εj,t+1) = PCov(vi,t+1, vj,t+1)P ′ and get an
identity Ωxc = PΣxcP ′. Of course, Ωwc = PΣwcP ′ also holds.

The identity could be rewritten as
GΩΓxcΩ G

′
Ω = PGΣΓxcΣ G

′
ΣP
′ (31)

Applying the vec operator to both sides and using the trick that vec(ABC) = (C ′ �A) · vec(B) (see Hamilton 1994 Proposition
10.4) we have

(GΩ �GΩ) · vec (ΓxcΩ ) = ((PGΣ) � (PGΣ)) · vec (ΓxcΣ ) (32)

Now we've got a mapping from cross-country structural shock correlation matrix to cross-country VAR shock correlation matrix.
If ((PGΣ) � (DGΣ)) is nonsingular, we could rewrite the relationship as

vec (ΓxcΣ ) = ((PGΣ) � (PGΣ))
−1

(GΩ �GΩ) · vec (ΓxcΩ ) (33)

And similarly, we have

(GΩ �GΩ) · vec (ΓwcΩ ) = ((PGΣ) � (PGΣ)) · vec (ΓwcΣ ) (34)

We could also analogously de�ne the variance-covariance matrix for the global structural shock

Ωglo =


Ωwc Ωxc · · · Ωxc

Ωxc Ωwc · · · Ωxc

...
... · · ·

...
Ωxc Ωxc · · · Ωwc


And equations (33) and (34) give us the connection between Ωglo and Σglo.

C.4 Illustrative example using the symmetric model

From the analysis above, we know there's a connection between the global structural shocks and global VAR shocks. And
we could design some experiments using this connection to study the e�ect of international integration on portfolio allocation.
Empirically, we follow the steps below:

1. Estimate a single country toy model using the US historical data. From this we could get a estimate for the variance-
covariance matrix Σwc (or equivalently GΣ and ΓwcΣ ). P matrix could also be calculated from the reduced form VAR coe�cients.

2. Using the identity Ωwc = PΣwcP ′, we have an estimate of Ωwc(or equivalently GΩ and ΓwcΩ ).
3. Manually set values for the cross-country structural shock correlation matrix ΓxcΩ . From equation (?) we will be able to

get the implied cross-country VAR shock correlation matrix ΓxcΣ .
4. Construct the implied global VAR variance-covariance matrix Σglo, based on our input ΓxcΩ in step 3. Given Σglo, we could

study the implications of international integration on global portfolio allocation.
Speci�cally, we assign 3 set of values toΓxcΩ in step 3 above, each corresponds a scenario below :
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1st Scenario). ΓxcΩ = 0
This is a benchmark case without international integration, where all cross-country structural shocks are uncorrelated.

2nd Scenario). ΓxcΩ =

[
ΓxcΩ,11 0

0 0

]
where ΓxcΩ,11 denote the cross-country CF news correlation.
This is a case with international integration, and the integration is purely driven by increased CF news correlation:

3rd Scenario). ΓxcΩ =

[
0 0
0 ΓxcΩ,22

]
where ΓxcΩ,22 denote the cross-country DR news correlation.
This is a case with international integration, and the integration is purely driven by increased DR news correlation.

C.5 Implied Correlation Structure of VAR in Section 3.3

First Scenario Second Scenario Third Scenario
Corr uxr,s udp uxr,s udp uxr,s udp
uxr,s 0 0 0.070 0 0.070 -0.087
udp 0 0 0 0 -0.087 0.109

C.6 From 2 state variables (toy model) to 6 state variables (general model)

It's very easy to incorporate the toy model in a more general framework. Recall that our general model for a single country is a
VAR with 6 state variables

z̃t+1 = a+ Az̃t + ut+1

where z̃t+1 = [xrs,t+1, xrn,t+1, dt+1 − pt+1, πt+1, y1,t+1, y10,t+1 − y1,t+1]. Toy model is a special case of the general model with

a =


λxr,0

0
λdp,0

0
0
0



A =


0 0 λxr,1 0 0 0
0 0 0 0 0 0
0 0 λdp,1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and

ut+1 =


vxr,t+1

0
vdp,t+1

0
0
0


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Appendix D. Data Description

We consider a number of time series from 7 major OECD countries, which accounts for 62% of total world market shares by
end of 2014.The full sample period is 1986:01 to 2013:12, yielding 336 monthly observations. We split the full sample to two
sub-periods, with the sub-period 1 from 1986:01 to 1999:12 and the sub-period 2 from 2000:01 to 2013:12. Returns are in U.S.
dollar currency-hedged terms in excess of the three-month U.S. Treasury bill rate.

D.1 Currency-hedged Return

Before further explaining our data in details, we �rst introduce the concept of currency hedged excess return. Consider a home
investor from US buying assets in a foreign country (for example in Japan), we are interested in his excess returns from this
investment denominated in home currency. We use a superscript ∗ to denote a foreign variable. St denotes the spot foreign
exchange rate, and an increase in St means home currency is weakening relative to foreign currency. To conduct this trade, the
investor at time t has to exchange 1 US dollar into 1

St
Japanese yen and invest in Japanese capital market, then converts the

money back to USD at time t+ 1 when the investment is liquidated. Thus the (unhedged) 1-period return in Japanese market
(measured in dollars) is

1 +RJPN,t+1 ≡ (1 +R∗JPN,t+1)
St+1

St

where R∗JPN,t+1 is return in Japanese asset denominated in Japanese yen (local return).
However, due to the uncertainty in future exchange rate St+1, the investor will want to lock down the future exchange rate

using a currency forward at forward rate Ft. So the currency hedged return of a US investor investing in Japan is de�ned as

1 +RhJPN,t+1 ≡ (1 +R∗JPN,t+1)
Ft
St

Recall from the covered interest rate parity (CIP), we also have

1 + iUS,t+1 = (1 + i∗JPN,t+1)
Ft
St

where iUS,t+1 is the nominal interest rate for the US, while iJPN,t+1 is the nominal interest rate for Japan. The intuition for this
equation is that the investor should not have arbitrage opportunities, or alternatively, should be indi�erent to invest locally or
abroad if the currency risk of investing in foreign country is hedged. This equation holds pretty well unless there's counter-party
risk or barriers to �nancial integration (transaction costs, taxes, capital controls, et cetera).

Combining equations (?) and (?), we know that the excess currency hedged return of a US investor investing in Japan is

1 +RhJPN,t+1

1 + iUS,t+1
=

1 +R∗JPN,t+1

1 + i∗JPN,t+1

or in log terms
rhJPN,t+1 − rf,US,t+1 = r∗JPN,t+1 − r∗f,JPN,t+1

where rf,US,t+1 = ln(1 + iUS,t+1) and rf,JPN,t+1 = ln(1 + i∗JPN,t+1) are the risk free rates in US and Japan. Thus, we have
shown that the excess currency-hedged return of US investors investing in Japan is the same as the excess return of Japanese
investors investing in home country (local excess return).

D.2 Main Variables

Now we introduce our main variables brie�y.

Returns, Dividend Yield and In�ation

The international portfolio we consider are constructed from country level index in equity and bonds. The country level
stock returns are measured as dollar returns on MSCI net total return indices, which reinvest dividends after the deduction of
withholding taxes. We use Merill Lynch total return indices (7yr-10yr) to get bond returns. The dividend yield is measured
as the log of MSCI dividend yield (MSDY), which is calculated using the trailing 12-month cash earnings per share �gure. All
the data on stock and bond returns as well as dividend yields are from Datastream. Table 2.A reports sample correlations of
monthly bond and stock returns for the period January 1986 to December 2013. Returns are in U.S. Dollar currency-hedged
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terms in excess of the three-month U.S. Treasury bill rate. (???). Table 2.B and 2.C further look at the correlations in the two
sub-samples we are studying.

For the in�ation, we get data from both Datastream and Global Financial Data (GFD). We �rst get annualized in�ation
rates from Datastream. But for France and UK, the data does not go back far enough because data comes from newer HICP
that started in 1990's; thus, we compute in�ation manually using CPI for France and RPI for UK from GSD.

Foreign Exchange Rates

We get spot currency levels and one-month forward currency levels from Datastream. The currency levels are all in terms of 1
US dollar except for British Pound (GBP), so we invert GBP to get correct reference frame. The (unhedged) currency returns

are calculated as ln(St+1

St
) for spot currency levels for 1 USD, and the currency-hedged returns are calculated as ln Ft

St
for forward

and spot currency levels for 1 USD. Note that French and German data switch to Euros at the beginning of 1999.

Short Term and Long Term Nominal Interest Rate

We use 1 month T-bill rate for US short term nominal interest rate, and for other countries we use di�erent rates on short term
�nancial instruments including 1 month Euribor rates, bank loan rates or overnight money market interest rates. The data are
from GFD and central bank websites. Long term nominal interest rate are represented using 10 year yields. The US series is
from CRSP Fixed Term Indices and other countries from GFD.

Data Source

Variable Source Description Download Information

Equity Index Datastream MSCI net returns in USD using MSNR (net

dividends reinvested); sheet also contains

MSCI price indices in USD using MSPI (no

dividends reinvested) and MSCI return

indices in USD using MSRI (gross dividends

reinvested); get returns with simple division

of levels; can also get local returns as

opposed to USD returns. Take simple USD

returns from MSNR and takes LN of gross

returns.

MSAUSTL, MSCNDAL, MSFRNCL,

MSGERML, MSJPANL, MSUTDKL,

MSUSAML with �elds MSNR, MSPI, or

MSRI

Dividend

yields

Datastream Dividend yields; take LN MSAUSTL, MSCNDAL, MSFRNCL,

MSGERML, MSJPANL, MSUTDKL,

MSUSAML with �eld MSDY

Bond Index Datastream Merrill Lynch total return indices; get

simple returns with simple division of levels;

numbers are already in USD. We take only

7y-10y sector TR and takes LN of gross

returns

Datastream tickers: MLAD1T3, MLAD3T5,

MLAD5T7, MLAD710, MLCD1T3,

MLCD3T5, MLCD5T7, MLCD710,

MLFF1T3, MLFF3T5, MLFF5T7,

MLFF710, MLDM1T3, MLDM3T5,

MLDM5T7, MLDM710, MLJP1T3,

MLJP3T5, MLJP5T7, MLJP710,

MLUK1T3, MLUK3T5, MLUK5T7,

MLUK710, MLUS1T3, MLUS3T5,

MLUS5T7, MLUS710

In�ation Datastream

and Global

Financial

Data(GFD)

Get annualized in�ation rates from

Datastream and take monthly di�erences to

account for seasonality; for France and UK,

data does not go back far enough because

data comes from newer HICP that started

in 1990's; thus, use GFD to get older CPI

for France and RPI for UK and manually

compute in�ation. We take LN of 1 +

monthly di�erence.

Datastream tickers: AUCPANNL,
BDCPANNL, CNCPANNL, FRCPANNL,
JPCPANNL, UKCPANNL, USCPANNL;

GFD tickers: CPAUSM, CPCANM,

CPFRAM (this is French CPI), CPHFRAM

(this is French HICP), CPDEUM,

CPJPNM, CPGBRM (this is UK RPI),

CPHGBRM (this is UK HICP), CPUSAM
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FX Data

(spot and

forward

currency level)

Datastream Currency returns calculated as

LN(SPOT(t+1)/SPOT(t)) for SPOT

currency levels for 1 USD; hedged currency

returns calculated as LN(FWD(t)/SPOT(t))

for FWD and SPOT currency levels for 1

USD; note that French and German data

switch to Euros at the beginning of 1999

Get spot currency levels with BBAUDSP,

BBCADSP, BBFRFSP, BBDEMSP,

BBJPYSP, BBGBPSP, BBEURSP - these

are all in terms of 1 USD except for GBP, so

need to invert GBP to get correct reference

frame; get 1m forward currency levels with

BBAUD1F, BBCAD1F, BBFRF1F,

BBDEM1F, BBJPY1F, BBGBP1F,

BBEUR1F - these are all in terms of 1 USD

except for GBP, so need to invert GBP to

get correct reference frame

Short Term

Interest Rate

GFD and

websites

Short nominal rates; Australia: target FF

rates; Canada: bank rates, which are

discount rates or +25bp over target FF

rates; France/Germany: 1 month Euribor

rates; Japan: basic discount rates/basic loan

rates; UK: bank rates, which are discount

rates; US: 12*RF where RF is the 1 month

T-bill rate; take LN of (1+SR) as de�ned

above and divides by 12 to get monthly

�gure

Australia: GFD (from Global Currency

Hedging paper) until 200605, then from

http://www.rba.gov.au/statistics/

cash-rate.html; Canada: http://www.

bankofcanada.ca/rates/interest-rates/

canadian-interest-rates/; France: GFD

(from Global Currency Hedging paper) until

200412, then from

http://www.global-rates.com/

interest-rates/euribor/2010.aspx;

Germany: GFD (from Global Currency

Hedging paper) until 200412, then from

http://www.global-rates.com/

interest-rates/euribor/2010.aspx;

Japan:

http://www.boj.or.jp/en/statistics/

boj/other/discount/index.htm/; UK:

http://www.bankofengland.co.uk/mfsd/

iadb/Repo.asp?Travel=NIxRPx; US: from

Ken French's website

Long Term

Interest Rate

GFD and

CRSP

Long nominal rates; essentially CMT at 5y

and 10y points; takes LN of 1 + LR using

the 10y point and divides by 12 to get

monthly �gure

For non-US, use GFD and the following
symbols: IGAUS5D, IGCANB5D,
IGFRA5D, IGDEU5D, IGJPN5D,

IGGBR5D; IGAUS10D, IGCAN10D,
IGFRA10D, IGDEU10D, IGJPN10D,

IGGBR10D

for US, use CRSP Fixed Term Indices

(Daily Series of Yield to Maturity) and the

data for 2014 comes from, taking the yield

at the end of each month

http://www.treasury.gov/

resource-center/data-chart-center/

interest-rates/Pages/TextView.aspx?

data=yieldYear&year=2014

Market

Capitalization

World Bank Market capitalization of each country "Market capitalization of listed companies

(current US$)" on world bank website

http://data.worldbank.org/indicator/

CM.MKT.LCAP.CD/countries
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Appendix E. VAR Model Estimation

Table E1. Pooled VAR(1) Model Estimates

Panel A

Model estimates Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.087 0.030 0.013 0.025 -0.985 1.074 0.014
(2.288) (0.283) (2.086) (0.057) (-0.796) (0.471)

(2) log bond excess returns -0.049 0.083 0.002 -0.268 0.724 2.590 0.047
(-4.413) (2.492) (1.343) (-1.930) (1.934) (3.613)

(3) log dividend yield -0.088 -0.093 0.977 0.123 -0.036 -3.645 0.961
(-2.190) (-0.822) (149.138) (0.257) (-0.028) (-1.512)

(4) log in�ation 0.004 -0.013 0.000 0.177 0.274 0.019 0.093
(2.600) (-2.731) (-0.286) (6.896) (5.421) (0.196)

(5) log short rate 0.000 -0.002 0.000 0.004 1.007 0.075 0.978
(1.294) (-4.294) (-1.857) (2.164) (194.594) (6.734)

(6) log yield spread 0.000 0.001 0.000 -0.002 -0.018 0.900 0.860
(1.739) (1.125) (0.440) (-0.748) (-2.676) (65.320)

Panel B

Within-country Residual Correlation Matrix (1986-2013)
averaged over 7 countries
average annualized volatility*100 in diagonal

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 18.150 0.081 -0.896 0.014 -0.024 -0.036
(2) log bond excess returns 0.081 5.853 -0.066 -0.059 -0.172 -0.474
(3) log dividend yield -0.896 -0.066 20.211 0.032 0.036 0.030
(4) log in�ation 0.014 -0.059 0.032 1.074 0.051 -0.001
(5) log short rate -0.024 -0.172 0.036 0.051 0.106 -0.719
(6) log yield spread -0.036 -0.474 0.030 -0.001 -0.719 0.123

Cross-country Residual Correlation Matrix (1986-2013)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 18.150 0.081 -0.896 0.014 -0.024 -0.036
(2) log bond excess returns 0.081 5.853 -0.066 -0.059 -0.172 -0.474
(3) log dividend yield -0.896 -0.066 20.211 0.032 0.036 0.030
(4) log in�ation 0.014 -0.059 0.032 1.074 0.051 -0.001
(5) log short rate -0.024 -0.172 0.036 0.051 0.106 -0.719
(6) log yield spread -0.036 -0.474 0.030 -0.001 -0.719 0.123
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Panel C

Within-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries

diagonal terms are annualized average volatility*100
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.215 0.298 -0.927 -0.030 -0.093 -0.105
(2) log bond excess returns 0.298 6.430 -0.290 -0.066 -0.189 -0.445
(3) log dividend yield -0.927 -0.290 20.859 0.061 0.086 0.113
(4) log in�ation -0.030 -0.066 0.061 1.028 0.039 0.020
(5) log short rate -0.093 -0.189 0.086 0.039 0.136 -0.726
(6) log yield spread -0.105 -0.445 0.113 0.020 -0.726 0.153

Cross-country Residual Correlation Matrix (1986.01-1999.12)
averaged over 7 countries

diagonal terms are average cross-country correlation of the same state variable
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 0.540 0.185 -0.512 -0.022 -0.034 -0.075
(2) log bond excess returns 0.070 0.413 -0.073 -0.018 -0.059 -0.226
(3) log dividend yield -0.528 -0.178 0.513 0.032 0.028 0.079
(4) log in�ation -0.054 -0.052 0.063 0.098 0.031 0.030
(5) log short rate -0.046 -0.055 0.042 0.008 0.091 -0.050
(6) log yield spread -0.012 -0.231 0.017 0.004 -0.030 0.190

Panel D

Within-country Residual Correlation Matrix (2000.01-2013.12)
averaged over 7 countries
diagonal terms are annualized average volatility*100

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 16.914 -0.217 -0.864 0.055 0.112 0.099
(2) log bond excess returns -0.217 5.158 0.233 -0.043 -0.131 -0.573
(3) log dividend yield -0.864 0.233 19.312 0.003 -0.052 -0.129
(4) log in�ation 0.055 -0.043 0.003 1.090 0.072 -0.017
(5) log short rate 0.112 -0.131 -0.052 0.072 0.060 -0.672
(6) log yield spread 0.099 -0.573 -0.129 -0.017 -0.672 0.079

Cross-country Residual Correlation Matrix (2000.01-2013.12)
averaged over 7 countries
diagonal terms are average cross-country correlation of the same state variable

(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 0.712 -0.208 -0.604 0.017 0.103 0.105
(2) log bond excess returns -0.204 0.607 0.193 -0.025 -0.040 -0.408
(3) log dividend yield -0.635 0.200 0.571 0.019 -0.034 -0.139
(4) log in�ation 0.057 -0.062 -0.022 0.243 0.111 -0.038
(5) log short rate 0.097 -0.018 -0.050 0.065 0.244 -0.192
(6) log yield spread 0.079 -0.403 -0.105 -0.034 -0.163 0.457
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Table E2. VAR(1) Model Estimates [Australia]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.038 -0.257 0.026 0.422 -1.228 0.589 0.019
0.854 -1.425 1.042 0.374 -0.690 0.234

(2) log bond excess returns -0.044 0.096 0.007 -0.338 0.757 2.572 0.043
-2.122 1.577 1.088 -0.728 1.457 2.492

(3) log dividend yield -0.065 0.267 0.945 0.731 0.507 -4.199 0.920
-1.145 1.334 35.173 0.548 0.266 -1.416

(4) log in�ation 0.001 -0.003 0.000 0.735 0.127 0.013 0.701
0.674 -1.158 -0.675 9.904 2.474 0.212

(5) log short rate 0.000 0.002 0.000 0.046 0.982 0.179 0.948
0.653 0.840 0.506 2.311 38.719 3.525

(6) log yield spread 0.000 -0.003 0.000 -0.046 0.007 0.787 0.701
0.235 -1.691 -0.972 -2.307 0.258 14.980

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 17.555 0.222 -0.918 -0.006 -0.044 -0.032
(2) log bond excess returns 0.222 6.606 -0.185 -0.054 -0.060 -0.280
(3) log dividend yield -0.918 -0.185 19.470 0.008 0.030 0.040
(4) log in�ation -0.006 -0.054 0.008 0.455 0.092 -0.072
(5) log short rate -0.044 -0.060 0.030 0.092 0.226 -0.935
(6) log yield spread -0.032 -0.280 0.040 -0.072 -0.935 0.241

Table E3. VAR(1) Model Estimates [Canada]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.112 0.118 0.009 0.480 -1.297 1.496 0.026
1.801 0.914 0.787 0.665 -0.846 0.509

(2) log bond excess returns -0.083 0.027 0.001 0.100 0.554 2.735 0.059
-2.843 0.379 0.312 0.287 1.022 2.161

(3) log dividend yield -0.127 -0.203 0.978 -0.401 -0.424 -5.249 0.969
-1.938 -1.500 65.919 -0.453 -0.249 -1.651

(4) log in�ation 0.008 -0.013 0.000 0.075 0.280 -0.104 0.076
1.607 -1.277 -0.453 1.075 2.509 -0.485

(5) log short rate 0.000 -0.004 0.000 -0.001 1.005 0.035 0.988
-0.161 -3.094 -1.781 -0.115 115.610 1.620

(6) log yield spread 0.001 0.002 0.000 -0.001 -0.013 0.943 0.930
2.065 2.211 1.387 -0.332 -1.395 44.625

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.645 0.138 -0.910 0.089 -0.019 -0.046
(2) log bond excess returns 0.138 6.027 -0.129 0.009 -0.314 -0.342
(3) log dividend yield -0.910 -0.129 17.650 -0.044 0.038 0.042
(4) log in�ation 0.089 0.009 -0.044 1.166 0.020 -0.009
(5) log short rate -0.019 -0.314 0.038 0.020 0.099 -0.733
(6) log yield spread -0.046 -0.342 0.042 -0.009 -0.733 0.103
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Table E4. VAR(1) Model Estimates [France]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.106 0.414 0.007 2.071 -0.175 4.137 0.037
1.460 1.808 0.571 1.677 -0.068 0.681

(2) log bond excess returns -0.031 0.041 0.008 -0.806 0.843 2.447 0.060
-1.950 0.610 2.553 -2.483 1.399 1.764

(3) log dividend yield -0.098 -0.574 0.969 -1.545 -0.614 -6.157 0.939
-1.315 -2.474 66.193 -1.090 -0.225 -0.960

(4) log in�ation 0.004 -0.014 0.000 0.039 0.206 0.127 0.048
1.745 -1.572 0.075 0.698 2.306 0.620

(5) log short rate 0.000 -0.003 0.000 0.001 1.017 0.071 0.991
-0.357 -3.312 -3.160 0.170 97.311 1.879

(6) log yield spread 0.000 0.002 0.000 0.009 -0.031 0.904 0.925
1.581 1.615 1.030 1.482 -2.531 22.376

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 19.612 0.118 -0.858 -0.041 -0.021 -0.068
(2) log bond excess returns 0.118 5.304 -0.038 -0.085 -0.161 -0.467
(3) log dividend yield -0.858 -0.038 22.475 0.138 -0.011 0.059
(4) log in�ation -0.041 -0.085 0.138 0.845 0.080 -0.011
(5) log short rate -0.021 -0.161 -0.011 0.080 0.084 -0.757
(6) log yield spread -0.068 -0.467 0.059 -0.011 -0.757 0.100

Table E5. VAR(1) Model Estimates [Germany]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.090 -0.112 0.021 -0.330 -2.835 2.763 0.024
1.348 -0.463 1.398 -0.310 -1.269 0.487

(2) log bond excess returns -0.043 0.015 0.001 -0.392 0.077 1.254 0.050
-3.142 0.240 0.325 -1.516 0.136 1.076

(3) log dividend yield -0.114 -0.024 0.953 0.168 0.477 -8.062 0.927
-1.638 -0.093 59.004 0.148 0.206 -1.398

(4) log in�ation 0.004 -0.019 0.000 -0.112 0.140 -0.525 0.050
1.593 -1.991 0.675 -1.840 0.998 -2.111

(5) log short rate 0.000 -0.003 0.000 0.003 1.008 0.035 0.992
1.131 -4.338 -1.717 0.791 166.971 1.878

(6) log yield spread 0.000 0.002 0.000 0.003 -0.012 0.957 0.940
1.397 2.736 1.370 0.873 -1.519 47.945

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 22.027 -0.077 -0.873 0.066 0.076 -0.045
(2) log bond excess returns -0.077 5.025 0.080 -0.104 -0.324 -0.487
(3) log dividend yield -0.873 0.080 23.996 -0.039 -0.036 0.023
(4) log in�ation 0.066 -0.104 -0.039 1.120 0.027 0.060
(5) log short rate 0.076 -0.324 -0.036 0.027 0.057 -0.587
(6) log yield spread -0.045 -0.487 0.023 0.060 -0.587 0.070
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Table E6. VAR(1) Model Estimates [Japan]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.120 0.131 0.010 -1.240 0.001 4.789 0.024
1.742 0.565 0.980 -1.462 0.000 0.645

(2) log bond excess returns -0.040 0.135 0.009 -0.105 0.963 9.177 0.101
-2.877 2.062 3.258 -0.494 1.236 4.035

(3) log dividend yield -0.130 -0.149 0.976 1.109 -2.760 -13.301 0.978
-1.557 -0.537 65.333 1.094 -0.746 -1.400

(4) log in�ation 0.003 0.003 0.000 0.187 0.387 0.113 0.070
0.775 0.194 -0.161 4.494 1.963 0.232

(5) log short rate 0.000 -0.001 0.000 0.002 0.984 0.003 0.992
-0.056 -2.340 -2.425 0.749 120.299 0.216

(6) log yield spread 0.000 -0.001 0.000 -0.002 0.003 0.905 0.899
2.336 -1.172 -2.427 -0.824 0.363 34.864

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 20.175 0.043 -0.855 0.045 -0.048 -0.016
(2) log bond excess returns 0.043 5.237 -0.045 0.036 -0.190 -0.720
(3) log dividend yield -0.855 -0.045 23.529 -0.010 0.070 0.020
(4) log in�ation 0.045 0.036 -0.010 1.252 0.058 -0.042
(5) log short rate -0.048 -0.190 0.070 0.058 0.041 -0.408
(6) log yield spread -0.016 -0.720 0.020 -0.042 -0.408 0.061

Table E7. VAR(1) Model Estimates [United Kingdom]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.058 0.035 0.031 0.051 -1.733 -0.927 0.023
0.942 0.237 1.816 0.074 -0.815 -0.228

(2) log bond excess returns -0.032 0.127 0.002 -0.114 0.689 2.258 0.032
-1.369 2.194 0.399 -0.367 1.008 1.750

(3) log dividend yield -0.051 -0.115 0.969 -0.152 1.335 -0.003 0.953
-0.791 -0.691 51.994 -0.214 0.600 -0.001

(4) log in�ation 0.004 -0.026 0.001 0.156 0.210 -0.018 0.078
0.960 -1.691 0.380 2.376 1.431 -0.058

(5) log short rate 0.000 -0.004 0.000 0.005 1.015 0.048 0.994
1.261 -3.927 -2.125 1.525 102.847 2.350

(6) log yield spread 0.000 0.002 0.000 -0.006 -0.027 0.931 0.955
-0.025 1.713 2.301 -1.150 -2.697 43.322

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.937 0.150 -0.910 -0.030 -0.078 -0.092
(2) log bond excess returns 0.150 6.368 -0.133 -0.083 -0.257 -0.591
(3) log dividend yield -0.910 -0.133 17.728 0.085 0.068 0.101
(4) log in�ation -0.030 -0.083 0.085 1.433 0.105 0.023
(5) log short rate -0.078 -0.257 0.068 0.105 0.078 -0.585
(6) log yield spread -0.092 -0.591 0.101 0.023 -0.585 0.099
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Table E8. VAR(1) Model Estimates [United States]

Panel A. Model estimates
Coe�cients on lagged variables
(1) (2) (3) (4) (5) (6) Rsq

(1) log stock excess returns 0.074 -0.021 0.025 0.064 -3.911 -7.121 0.026
1.018 -0.151 2.442 0.081 -1.682 -1.683

(2) log bond excess returns -0.086 0.098 -0.004 -0.687 1.791 4.373 0.090
-3.206 1.824 -1.175 -1.888 2.361 3.184

(3) log dividend yield -0.054 0.039 0.978 0.541 2.124 5.629 0.981
-0.772 0.294 91.974 0.748 0.859 1.336

(4) log in�ation 0.009 -0.015 0.000 0.430 0.127 -0.098 0.246
1.537 -1.698 0.446 5.186 0.929 -0.403

(5) log short rate 0.001 -0.001 0.000 0.006 1.040 0.168 0.957
0.746 -0.637 -3.003 0.978 80.709 5.540

(6) log yield spread 0.000 0.000 0.000 0.002 -0.065 0.785 0.778
0.380 0.028 2.944 0.260 -3.719 21.863

Panel B. Residual correlation matrix
(1) (2) (3) (4) (5) (6)

(1) log stock excess returns 15.531 -0.009 -0.955 -0.033 0.035 -0.036
(2) log bond excess returns -0.009 6.148 -0.012 -0.133 0.056 -0.497
(3) log dividend yield -0.955 -0.012 15.720 0.044 0.002 0.016
(4) log in�ation -0.033 -0.133 0.044 0.979 -0.026 0.076
(5) log short rate 0.035 0.056 0.002 -0.026 0.140 -0.889
(6) log yield spread -0.036 -0.497 0.016 0.076 -0.889 0.166
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Appendix F. Fisher Transformation and Correlation Contribution

F.1 Fisher Transformation

• Test hypothesis about population correlation coe�cient ρ between X and Y using the sample correlation coe�cient r.

• De�ne z = 1
2 ln

(
1+r
1−r

)
. If (X,Y ) is bivariate normal, and if (Xi, Yi) used to form r are independent, then z ∼ N

(
1
2 ln

(
1+ρ
1−ρ

)
, 1
N−3

)
,

where N is the sample size.

• For two samples of data, the early sample (1) and the late sample (2), de�ne z1 = 1
2 ln

(
1+r1
1−r1

)
and z2 = 1

2 ln
(

1+r2
1−r2

)
. The

di�erence is z1 − z2 ∼ N
(

1
2 ln

(
1+ρ1
1−ρ1

)
− 1

2 ln
(

1+ρ2
1−ρ2

)
, 1
N1−3 + 1

N2−3

)
. p-values can then be obtained in the normal way.

F.2 Correlation Contribution

• Stocks: x̃rt+1 = NCF,t+1 −NRR,t+1 −NRP,t+1.

• Bonds: x̃rt+1 = −NCF,t+1 −NRR,t+1 −NRP,t+1. An increase in NCF,t+1 here is interpreted as in�ation.

• The reported �Component Correlations� in Tables 4-6 look at correlations of the above components with no signs.

• The reported �Component Contributions� in Tables 4-6 look at how much of the average correlation in excess returns is
being explained by covariances of news components. E.g., in Table 3, the bonds/bonds across countries pairwise correlation

in the �rst sample period is
∑
i,j Corr (xri, xrj). Rewrite this as

∑
i,j

C[xri,xrj ]
σ(xri)σ(xrj)

. The numerator can be broken into 9

covariances of news components that contribute to the average correlation in excess returns. Note that because the news
components come from innovations in excess returns as opposed to actual excess returns, the component contributions
don't sum up exactly to the average correlation in excess returns.
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Appendix G. Semide�nite Programming Method

We do a constrained minimization problem to estimate the covariance matrices which satisfy two constraints: A). volatility
matrix and within-country correlation are the same across two sample period. B). covariance matrix is positive semi-de�nite.
First we decompose a covariance matrix into volatility matrix and correlation matrix

Σ = DΓD =

 σ1 · · · 0
...

. . .
...

0 · · · σm


 1 · · · ρ1m

...
. . .

...
ρ1m · · · 1


 σ1 · · · 0

...
. . .

...
0 · · · σm


Where the σi and ρij (i, j = 1, ...,m) are the coe�cients to be estimated. Suppose Σ̂1 and Σ̂2 are the sample covariance matrices
for early period and late period (known), then we need to estimate two covariance matrix Σ1 = D1Γ1D1 and Σ2 = D2Γ2D2

with the constraint D1 = D2 = D and Γwithin1 = Γwithin2 . We use the minimum distance estimation, and this is a well de�ned
constrained optimization problem

min
Σ1,Σ2

{
‖ Σ̂1 − Σ1 ‖2 + ‖ Σ̂2 − Σ2 ‖2

}
⇐⇒ min

D,Γ1,Γ2

{
‖ Σ̂1 −DΓ1D ‖2 + ‖ Σ̂2 −DΓ2D ‖2

}
s.t. Γi < 0 (i = 1, 2)

Γwithin2 = Γwithin1

where ‖ . ‖2 represents the norm in L2 space (‖ A−B ‖2=
∑
i,j(aij − bij)2), the notation Γ < 0 means the matrix Γ is positive

semi-de�nite, and Γwithin denotes the within-country correlation. To solve the Semide�nite programming (SDP) problem, we
use the MATLAB package CVX by Stephen Boyd. http://cvxr.com/cvx/doc/sdp.html
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